1
|
YAO Z, ZHAI Y, WANG X, WANG H. Estimating the spatial distribution of African swine fever outbreak in China
by combining four regional-level spatial models. J Vet Med Sci 2023; 85:1330-1340. [PMID: 37899237 PMCID: PMC10788172 DOI: 10.1292/jvms.23-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The outbreaks of African Swine Fever (ASF) in China are ongoing, and the inadequate management of the pig supply chain is criticized. In the past four years, a series of preventive and control measures have been supplied national wide, while the outbreaks have not been terminated. This suggests the existing animal disease management at the district level may not be appropriate to control ASF under the current situation of the ASF outbreak in China. It is urgent to further describe real distribution areas of ASF in China. In this study, we combined four regional-scale models to predict the risk distribution of ASF in mainland China and identify risk factors related to ASF outbreaks. The results showed that the four regional-scale models were more accurate in predicting the ASF outbreaks than the nationwide scale model. The four regional-scale models identified the potential risk factors associated with ASF outbreaks, such as population density, pig density, land cover, temperature, and elevation factors. Moreover, seven clusters with high potential risk of ASF outbreaks were identified. Then, based on the results, we proposed more suitable prevention and control plans for ASF, which can assist the implementation of transport management policies within and between risk clusters.
Collapse
Affiliation(s)
- ZhenFei YAO
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - YuJia ZHAI
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - XiaoLong WANG
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - HaoNing WANG
- School of Geography and Tourism, Harbin University,
Heilongjiang, P.R. China
| |
Collapse
|
2
|
Choi JH, Namgung H, Lim SJ, Kim EK, Oh Y, Park YC. Predicting Suitable Areas for African Swine Fever Outbreaks in Wild Boars in South Korea and Their Implications for Managing High-Risk Pig Farms. Animals (Basel) 2023; 13:2148. [PMID: 37443946 DOI: 10.3390/ani13132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
African swine fever (ASF) is a highly contagious disease affecting domestic pigs and wild boars, with no effective vaccine or treatment available. In South Korea, extensive measures have been implemented to prevent ASF transmission between wild boars and ASF spillover from wild boars to pig farm sectors, including the search for ASF-infected carcasses in mountainous forests and the installation of fences across wide areas of these forests. To determine the priority search range for infected carcasses and establish pig farm-centered quarantine measures, it is necessary to predict the specific path of ASF outbreaks in wild boars and identify pig farms at high risk of ASF spillover from wild boars. Here, we aimed to predict suitable areas and geographical paths for ASF outbreaks in wild boars using the MaxEnt model and shortest-path betweenness centrality analysis. The analysis identified a high frequency of ASF outbreaks in areas with a suitability value ≥0.4 on the suitability map and in areas within a 1.8 km range from the path on the shortest-path map, indicating these areas were high-risk zones for ASF outbreaks. Among the 5063 pig farms analyzed, 37 were in the high-risk zone on the suitability map, 499 were in the high-risk zone on the shortest-path map, and 9 were in both risk zones. Of the 51 pig farm sectors with a dense distribution of pig farms (kernel density ≥ 8), 25 sectors were in contact with or partially overlapped the high risk zone on the suitability map, 18 sectors were located within the high risk zone on the shortest-path map, and 14 sectors were located within both risk zones. These findings aided in determining the priority range for searches for wild boar carcasses and enabled the establishment of preemptive ASF prevention measures around the pig farming sectors that are at risk of ASF spillover from wild boars.
Collapse
Affiliation(s)
- Ju Hui Choi
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hun Namgung
- Ecological Survey Division, Korea National Park Research Institute, Wonju 26441, Republic of Korea
| | - Sang Jin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eui Kyeong Kim
- Ecological Survey Division, Korea National Park Research Institute, Wonju 26441, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yung Chul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Sykes AL, Galvis JA, O'Hara KC, Corzo C, Machado G. Estimating the effectiveness of control actions on African swine fever transmission in commercial swine populations in the United States. Prev Vet Med 2023; 217:105962. [PMID: 37354739 DOI: 10.1016/j.prevetmed.2023.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Given the proximity of African swine fever (ASF) to the U.S., there is an urgent need to better understand the possible dissemination pathways of the virus within the U.S. swine industry and to evaluate mitigation strategies. Here, we extended PigSpread, a farm-level spatially-explicit stochastic compartmental transmission model incorporating six transmission routes including between-farm swine movements, vehicle movements, and local spread, to model the dissemination of ASF. We then examined the effectiveness of control actions similar to the ASF national response plan. The average number of secondary infections during the first 60 days of the outbreak was 49 finisher farms, 17 nursery farms, 5 sow farms, and less than one farm in other production types. The between-farm movements of swine were the predominant route of ASF transmission with an average contribution of 71.1%, while local spread and movement of vehicles were less critical with average contributions of 14.6% and 14.4%. We demonstrated that the combination of quarantine, depopulation, movement restrictions, contact tracing, and enhanced surveillance, was the most effective mitigation strategy, resulting in an average reduction of 79.0% of secondary cases by day 140 of the outbreak. Implementing these control actions led to a median of 495,619 depopulated animals, 357,789 diagnostic tests, and 54,522 movement permits. Our results suggest that the successful elimination of an ASF outbreak is likely to require the deployment of all control actions listed in the ASF national response plan for more than 140 days, as well as estimating the resources needed for depopulation, testing, and movement permits under these controls.
Collapse
Affiliation(s)
- Abagael L Sykes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jason A Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kathleen C O'Hara
- US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Cesar Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Penrith ML, van Heerden J, Pfeiffer DU, Oļševskis E, Depner K, Chenais E. Innovative Research Offers New Hope for Managing African Swine Fever Better in Resource-Limited Smallholder Farming Settings: A Timely Update. Pathogens 2023; 12:355. [PMID: 36839627 PMCID: PMC9963711 DOI: 10.3390/pathogens12020355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics, and Public Health Group, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Edvīns Oļševskis
- Food and Veterinary Service, LV-1050 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment, “BIOR“, LV-1076 Riga, Latvia
| | - Klaus Depner
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden
| |
Collapse
|
5
|
A combination of probabilistic and mechanistic approaches for predicting the spread of African swine fever on Merry Island. Epidemics 2022; 40:100596. [DOI: 10.1016/j.epidem.2022.100596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
|
6
|
Machado G, Farthing TS, Andraud M, Lopes FPN, Lanzas C. Modelling the role of mortality-based response triggers on the effectiveness of African swine fever control strategies. Transbound Emerg Dis 2021; 69:e532-e546. [PMID: 34590433 DOI: 10.1111/tbed.14334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
African swine fever (ASF) is considered the most impactful transboundary swine disease. In the absence of effective vaccines, control strategies are heavily dependent on mass depopulation and shipment restrictions. Here, we developed a nested multiscale model for the transmission of ASF, combining a spatially explicit network model of animal shipments with a deterministic compartmental model for the dynamics of two ASF strains within 3 km × 3 km pixels in one Brazilian state. The model outcomes are epidemic duration, number of secondary infected farms and pigs, and distance of ASF spread. The model also shows the spatial distribution of ASF epidemics. We analyzed quarantine-based control interventions in the context of mortality trigger thresholds for the deployment of control strategies. The mean epidemic duration of a moderately virulent strain was 11.2 days, assuming the first infection is detected (best-case scenario), and 15.9 days when detection is triggered at 10% mortality. For a highly virulent strain, the epidemic duration was 6.5 days and 13.1 days, respectively. The distance from the source to infected locations and the spatial distribution was not dependent on strain virulence. Under the best-case scenario, we projected an average number of infected farms of 23.77 farms and 18.8 farms for the moderate and highly virulent strains, respectively. At 10% mortality-trigger, the predicted number of infected farms was on average 46.27 farms and 42.96 farms, respectively. We also demonstrated that the establishment of ring quarantine zones regardless of size (i.e. 5 km, 15 km) was outperformed by backward animal movement tracking. The proposed modelling framework provides an evaluation of ASF epidemic potential, providing a ranking of quarantine-based control strategies that could assist animal health authorities in planning the national preparedness and response plan.
Collapse
Affiliation(s)
- Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Trevor S Farthing
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Mathieu Andraud
- Anses, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare Research Unit, Ploufragan, France
| | - Francisco Paulo Nunes Lopes
- Departamento de Defesa Agropecuária, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Neumann EJ, Hall WF, Dahl J, Hamilton D, Kurian A. Is transportation a risk factor for African swine fever transmission in Australia: a review. Aust Vet J 2021; 99:459-468. [PMID: 34235721 DOI: 10.1111/avj.13106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
African swine fever (ASF) is a viral disease of the pigs that was first described in Africa during the early part of the twentieth century. The disease has periodically occurred outside of Africa, including an ongoing epidemic in Europe and Asia that started in 2007; the disease has never occurred in Australia or New Zealand. Once introduced into a country, spread can occur through direct and indirect routes of transmission. Infected feral pig populations have the potential to act as a long-term reservoir for the virus, making eradication difficult. Just before and throughout the period of clinical signs, ASF virus is shed in oronasal fluids, urine, faeces and blood. This results in contamination of the pig's environment, including flooring, equipment and vehicles. Transportation-related risk factors therefore are likely to play an important role in ASF spread, though evidence thus far has been largely anecdotal. In addition to the existing AUSVETPLAN ASF plan, efforts should be made to improve transportation biosecurity, from the time a pig leaves the farm to its destination. Collection of data that could quantify the capabilities and capacity of Australia to clean and disinfect livestock trucks would help to determine if private and/or public sector investment should be made in this area of biosecurity. No peer-reviewed research was identified that described a specific process for cleaning and disinfecting a livestock truck known to be contaminated with ASF virus, though literature suggests that transportation is an important route of transmission for moving the virus between farms and countries.
Collapse
Affiliation(s)
- E J Neumann
- Riddet Institute, Massey University, Tennent Drive, Palmerston North, 4474, New Zealand
| | - W F Hall
- William Hall and Associates, 114 Swan Drive, Googong, New South Wales, 2620, Australia
| | - J Dahl
- Danish Agriculture and Food Council, Axelborg, Copenhagen V, Denmark
| | - D Hamilton
- South Australian Research and Development Institute, South Australia, 5064, Australia
| | - A Kurian
- Epi-Insight Limited, 17 Main South Road, East Taieri, 9024, New Zealand
| |
Collapse
|
8
|
Yang J, Tang K, Cao Z, Pfeiffer DU, Zhao K, Zhang Q, Zeng DD. Demand-driven spreading patterns of African swine fever in China. CHAOS (WOODBURY, N.Y.) 2021; 31:061102. [PMID: 34241307 DOI: 10.1063/5.0053601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs. ASF has led to major economic losses and adverse impacts on livelihoods of stakeholders involved in the pork food system in many European and Asian countries. While the epidemiology of ASF virus (ASFV) is fairly well understood, there is neither any effective treatment nor vaccine. In this paper, we propose a novel method to model the spread of ASFV in China by integrating the data of pork import/export, transportation networks, and pork distribution centers. We first empirically analyze the overall spatiotemporal patterns of ASFV spread and conduct extensive experiments to evaluate the efficacy of a number of geographic distance measures. These empirical analyses of ASFV spread within China indicate that the first occurrence of ASFV has not been purely dependent on the geographical distance from existing infected regions. Instead, the pork supply-demand patterns have played an important role. Predictions based on a new distance measure achieve better performance in predicting ASFV spread among Chinese provinces and thus have the potential to enable the design of more effective control interventions.
Collapse
Affiliation(s)
- Jiannan Yang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Kaichen Tang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Zhidong Cao
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Dirk U Pfeiffer
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China
| | - Kang Zhao
- Tippie College of Business, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Daniel Dajun Zeng
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Gao X, Liu T, Liu Y, Xiao J, Wang H. Transmission of African swine fever in China Through Legal Trade of Live Pigs. Transbound Emerg Dis 2020; 68:355-360. [PMID: 32530109 DOI: 10.1111/tbed.13681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/03/2023]
Abstract
The African swine fever virus (ASFV) was first reported in China on 3 August 2018, which subsequently triggered a severe epidemic that spreads across the country. While the ASFV has numerous underlying transmission paths in China, this study primarily assessed the possibility of ASFV transmission through the legal animal husbandry trade. The reason for this is that, historically, this transmission path is one of the critical contacts for exotic diseases to access disease-free areas. This study employed a stochastic model to assess the monthly possibility for ASFV entering respective Chinese provinces. The results of this model suggest that the risk of ASFV transmission though the legal live-pig trade is highest in the southeastern regions of China. Vulnerable regions centred around Zhejiang, Jiangsu and Anhui provinces, especially throughout the months of January and December. Liaoning province contributes most to transmission risk with 46.7% of the overall annual risk. This study quantified the risk of ASFV spread in China related to the legal trade of pigs and provides detailed and new information for the development of ASFV monitoring and control plans in China and other countries who also face the challenge of ASFV.
Collapse
Affiliation(s)
- Xiang Gao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, Heilongjiang, PR China.,Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yuxin Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jianhua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|