1
|
Pan W, Liu X, Liu S. ALYREF m5C RNA methylation reader predicts bladder cancer prognosis by regulating the tumor immune microenvironment. Medicine (Baltimore) 2024; 103:e37590. [PMID: 38579085 PMCID: PMC10994465 DOI: 10.1097/md.0000000000037590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND 5-Methylcytidine (m5C) methylation is a recently emerging epigenetic modification that is closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the clinicopathological characteristics and prognostic value of m5C regulators in bladder cancer (BLCA), and their correlation with the tumor immune microenvironment. METHODS Thirteen m5C RNA methylation regulators were analyzed using RNA-sequencing and corresponding clinical information obtained from the TCGA database. The Cluster Profiler package was used to analyze the gene ontology function of potential targets and enriched the Kyoto Encyclopedia of Genes and Genomes pathway. Kaplan-Meier survival analysis was used to compare survival differences using the log-rank test and univariate Cox proportional hazards regression. The correlation between signature prognostic m5C regulators and various immune cells was analyzed. Univariate and multivariate Cox regression analyses identified independence of the ALYREF gene signature. RESULTS Nine out of the 13 m5C RNA methylation regulators were differentially expressed in BLCA and normal samples and were co-expressed. These 9 regulators were associated with clinicopathological tumor characteristics, particularly high or low tumor risk, pT or pTNM stage, and migration. Consensus clustering analysis divides the BLCA samples into 4 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment annotation and gene ontology function analysis identified 273 upregulated and 594 downregulated genes in BLCA. Notably, only ALYREF was significantly correlated with OS (P < .05). ALYREF exhibited significant infiltration levels in macrophage cells. Therefore, we constructed a nomogram for ALYREF as an independent prognostic factor. Additionally, we observed that both the mRNA and protein levels of ALYREF were upregulated, and immunofluorescence showed that ALYREF was mainly distributed in nuclear speckles. ALYREF overexpression was significantly associated with poor OS. CONCLUSION Our findings demonstrated the potential of ALYREF to predict clinical prognostic risks in BLCA patients and regulate the tumor immune microenvironment. As such, ALYREF may serve as a novel prognostic indicator in BLCA patients.
Collapse
Affiliation(s)
- Wengu Pan
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Xiaoli Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| | - Shuangde Liu
- Kidney Transplantation of The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Kidney Transplantation, Multidisciplinary Innovation Center for Nephrology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Chen ZB, He M, Li JYS, Shyy JYJ, Chien S. Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annu Rev Biomed Eng 2023; 25:157-184. [PMID: 36913673 DOI: 10.1146/annurev-bioeng-081922-021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The central dogma of gene expression involves DNA transcription to RNA and RNA translation into protein. As key intermediaries and modifiers, RNAs undergo various forms of modifications such as methylation, pseudouridylation, deamination, and hydroxylation. These modifications, termed epitranscriptional regulations, lead to functional changes in RNAs. Recent studies have demonstrated crucial roles for RNA modifications in gene translation, DNA damage response, and cell fate regulation. Epitranscriptional modifications play an essential role in development, mechanosensing, atherogenesis, and regeneration in the cardiovascular (CV) system, and their elucidation is critically important to understanding the molecular mechanisms underlying CV physiology and pathophysiology. This review aims at providing biomedical engineers with an overview of the epitranscriptome landscape, related key concepts, recent findings in epitranscriptional regulations, and tools for epitranscriptome analysis. The potential applications of this important field in biomedical engineering research are discussed.
Collapse
Affiliation(s)
- Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Ming He
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Julie Yi-Shuan Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| | - John Y-J Shyy
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Shu Chien
- Department of Medicine, University of California, San Diego, La Jolla, California, USA;
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
4
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
5
|
Zhu H, Liu G, Chang Q, Yan M, Yang K, Li Y, Nie Y, Li X, Han S, Wang P, Zhang L. Prenatal Lipopolysaccharide Exposure Alters Hepatic Drug-Metabolizing Enzyme Expression in Mouse Offspring via Histone Modifications. TOXICS 2023; 11:82. [PMID: 36668808 PMCID: PMC9866336 DOI: 10.3390/toxics11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Inflammation is a major regulator of drug-metabolizing enzymes (DMEs), therefore contributing to the interindividual variability of drug effects. However, whether prenatal inflammation affects DMEs expression in offspring remains obscure. This study investigated the effects of prenatal lipopolysaccharide (LPS) exposure on hepatic expression of inflammatory-related genes, nuclear receptors, and DMEs in offspring mice. Prenatal LPS exposure on gestational day (GD) 10 led to higher expression of NF-κB, Pxr, and Cyp2b10, while lower expression of Car, Ahr, Cyp3a11, and Ugt1a1 in postnatal day (PD) 30 offspring. However, multiple doses of LPS exposure on GD10-14 resulted in higher levels of inflammatory-related genes, Cyp1a2, and Cyp2b10, and lower levels of Pxr and Cyp3a11 in PD30 offspring liver. For PD60 offspring, decreased hepatic expression of NF-κB and IL-6, and increased expression of Pxr and Cyp3a11 were seen in single-dose LPS groups, whereas opposite results were observed in the multiple-dose LPS groups. Notably, enhanced H3K4me3 levels in the PXR response elements of the Cyp3a11 promoter were observed in the liver of PD60 offspring mice from dams treated with multiple doses of LPS during pregnancy. Overall, this study suggests that parental LPS exposure could persistently alter the hepatic expression of DMEs, and histone modifications may contribute to the long-term effects.
Collapse
Affiliation(s)
- Hanhan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou 450001, China
- Translational Medical Center, Weifang Second People’s Hospital, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China
| | - Guangming Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Qi Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Yan
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yali Nie
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotian Li
- Department of Pharmacology, School of Pharmacy, Zhengzhou University, Zhengzhou 450001, China
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Liu P, Dong C, Shi H, Yan Z, Zhang J, Liu J. Constructing and validating of m7G-related genes prognostic signature for hepatocellular carcinoma and immune infiltration: potential biomarkers for predicting the overall survival. J Gastrointest Oncol 2022; 13:3169-3182. [PMID: 36636051 PMCID: PMC9830319 DOI: 10.21037/jgo-22-1134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the prognostic significance of N7-methylguanosine (m7G) regulators and immune infiltration in liver hepatocellular carcinoma (LIHC). Methods The research measured predictive m7G genes in LIHC samples from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Data on the stemness index based on mRNA expression (mRNAsi), gene mutations, and corresponding clinical characteristics were obtained from TCGA and ICGC. Lasso regression was used to construct the prediction model to assess the m7G prognostic signals in LIHC. Based on these genes, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify key biological functions and pathways. The correlation between m7G RNA methylation regulators and the prognosis and immune infiltration of LIHC was evaluated. Results There were 21 m7G-related differentially expressed genes (DEGs) in LIHC and healthy tissues, and LIHC patients could be divided into two categories by consensus clustering of these DEGs. A five-gene predictive approach was employed using least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Patients in the low-risk group showed a significantly higher survival rate compared with those in the high-risk group (P=0.001). Validations using the ICGC database. Also, univariate and multivariate Cox regression analyses suggested that the risk score produced by the predictive model is an independent predictor for LIHC [hazard ratio (HR): 1.848, 95% confidence interval (CI): 1.286-2.656; HR: 2.597, 95% CI: 1.358-4.965]. The ROC curves of the ICGC cohort revealed that the five-gene prediction model performed well [area under the curve (AUC) =0.642 at 1 year, AUC =0.686 at 2 years, and AUC =0.667 at 3 years]. Immuno-oncology scoring revealed that in the high-risk group, among 16 immune cells, the expressions of neutrophils and natural killer (NK) cells were low and that of regulatory T-cells (Tregs) was high. Conclusions LIHC occurrence and progression are linked to m7G-related genes. Corresponding prognostic models help forecast the prognosis of LIHC patients. m7G-related genes and associated immune cell infiltration in the TME may serve as potential therapeutic targets in LIHC, which requires further trials. In addition, the m7G-related gene signature offers a viable alternative to predict LIHC, and these m7G-related genes show a prospective research area for LIHC targeted treatment in the future.
Collapse
Affiliation(s)
- Pulin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongshuo Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junlong Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China;,National International Joint Research Center of Molecular Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, China;,Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Traditional Chinese Medicine, Jinzhong, China
| | - Jianmin Liu
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Zhao Y, Guo Q, Cao S, Tian Y, Han K, Sun Y, Li J, Yang Q, Ji Q, Sederoff R, Li Y. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:994154. [PMID: 36204058 PMCID: PMC9530910 DOI: 10.3389/fpls.2022.994154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The AlkB homologs (ALKBH) gene family regulates N6-methyladenosine (m6A) RNA methylation and is involved in plant growth and the abiotic stress response. Poplar is an important model plant for studying perennial woody plants. Poplars typically have a long juvenile period of 7-10 years, requiring long periods of time for studies of flowering or mature wood properties. Consequently, functional studies of the ALKBH genes in Populus species have been limited. Based on AtALKBHs sequence similarity with Arabidopsis thaliana, 23 PagALKBHs were identified in the genome of the poplar 84K hybrid genotype (P. alba × P. tremula var. glandulosa), and gene structures and conserved domains were confirmed between homologs. The PagALKBH proteins were classified into six groups based on conserved sequence compared with human, Arabidopsis, maize, rice, wheat, tomato, barley, and grape. All homologs of PagALKBHs were tissue-specific; most were highly expressed in leaves. ALKBH9B and ALKBH10B are m6A demethylases and overexpression of their homologs PagALKBH9B and PagALKBH10B reduced m6A RNA methylation in transgenic lines. The number of adventitious roots and the biomass accumulation of transgenic lines decreased compared with WT. Therefore, PagALKBH9B and PagALKBH10B mediate m6A RNA demethylation and play a regulatory role in poplar growth and development. Overexpression of PagALKBH9B and PagALKBH10B can reduce the accumulation of H2O2 and oxidative damage by increasing the activities of SOD, POD, and CAT, and enhancing protection for Chl a/b, thereby increasing the salt tolerance of transgenic lines. However, overexpression lines were more sensitive to drought stress due to reduced proline content. This research revealed comprehensive information about the PagALKBH gene family and their roles in growth and development and responsing to salt stress of poplar.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Qi Guo
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Sen Cao
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yanting Tian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Juan Li
- Natural Resources and Planning Bureau of Yanshan County, Cangzhou, Hebei, China
| | - Qingshan Yang
- Shandong Academy of Forestry, Jinan, Shandong, China
| | - Qingju Ji
- Cangzhou Municipal Forestry Seeding and Cutting Management Center, Cangzhou, China
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Yun Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, National Engineering Research Center of Tree Breeding and Ecological Restoration, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Nsengimana B, Khan FA, Ngowi EE, Zhou X, Jin Y, Jia Y, Wei W, Ji S. Processing body (P-body) and its mediators in cancer. Mol Cell Biochem 2022; 477:1217-1238. [PMID: 35089528 DOI: 10.1007/s11010-022-04359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
In recent years, processing bodies (P-bodies) formed by liquid-liquid phase separation, have attracted growing scientific attention due to their involvement in numerous cellular activities, including the regulation of mRNAs decay or storage. These cytoplasmic dynamic membraneless granules contain mRNA storage and decay components such as deadenylase and decapping factors. In addition, different mRNA metabolic regulators, including m6A readers and gene-mediated miRNA-silencing, are also associated with such P-bodies. Cancerous cells may profit from these mRNA decay shredders by up-regulating the expression level of oncogenes and down-regulating tumor suppressor genes. The main challenges of cancer treatment are drug resistance, metastasis, and cancer relapse likely associated with cancer stem cells, heterogeneity, and plasticity features of different tumors. The mRNA metabolic regulators based on P-bodies play a great role in cancer development and progression. The dysregulation of P-bodies mediators affects mRNA metabolism. However, less is known about the relationship between P-bodies mediators and cancerous behavior. The current review summarizes the recent studies on P-bodies mediators, their contribution to tumor development, and their potential in the clinical setting, particularly highlighting the P-bodies as potential drug-carriers such as exosomes to anticancer in the future.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Xuefeng Zhou
- Department of Oncology, Dongtai Affiliated Hospital of Nantong University, Dongtai, 224200, Jiangsu, People's Republic of China
| | - Yu Jin
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| |
Collapse
|
9
|
Yu J, Liang LL, Liu J, Liu TT, Li J, Xiu L, Zeng J, Wang TT, Wang D, Liang LJ, Xie DW, Chen DX, An JS, Wu LY. Development and Validation of a Novel Gene Signature for Predicting the Prognosis by Identifying m5C Modification Subtypes of Cervical Cancer. Front Genet 2021; 12:733715. [PMID: 34630524 PMCID: PMC8493221 DOI: 10.3389/fgene.2021.733715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background: 5-Methylcytidine (m5C) is the most common RNA modification and plays an important role in multiple tumors including cervical cancer (CC). We aimed to develop a novel gene signature by identifying m5C modification subtypes of CC to better predict the prognosis of patients. Methods: We obtained the expression of 13 m5C regulatory factors from The Cancer Genome Atlas (TCGA all set, 257 patients) to determine m5C modification subtypes by the "nonnegative matrix factorization" (NMF). Then the "limma" package was used to identify differentially expressed genes (DEGs) between different subtypes. According to these DEGs, we performed Cox regression and Kaplan-Meier (KM) survival analysis to establish a novel gene signature in TCGA training set (128 patients). We also verified the risk prediction effect of gene signature in TCGA test set (129 patients), TCGA all set (257 patients) and GSE44001 (300 patients). Furthermore, a nomogram including this gene signature and clinicopathological parameters was established to predict the individual survival rate. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, colony formation, migration and invasion assays. Results: Based on consistent clustering of 13 m5C-modified genes, CC was divided into two subtypes (C1 and C2) and the C1 subtype had a worse prognosis. The 4-gene signature comprising FNDC3A, VEGFA, OPN3 and CPE was constructed. In TCGA training set and three validation sets, we found the prognosis of patients in the low-risk group was much better than that in the high-risk group. A nomogram incorporating the gene signature and T stage was constructed, and the calibration plot suggested that it could accurately predict the survival rate. The expression levels of FNDC3A, VEGFA, OPN3 and CPE were all high in cervical cancer tissues. Downregulation of FNDC3A, VEGFA or CPE expression suppressed the proliferation, migration and invasion of SiHa cells. Conclusions: Two m5C modification subtypes of CC were identified and then a 4-gene signature was established, which provide new feasible methods for clinical risk assessment and targeted therapies for CC.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei-Lei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting-Ting Liu
- Department of Blood Grouping, Beijing Red Cross Blood Center, Beijing, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Xiu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Tian Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Jun Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Da-Wei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ju-Sheng An
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Ying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Klinge CM, Piell KM, Petri BJ, He L, Zhang X, Pan J, Rai SN, Andreeva K, Rouchka EC, Wahlang B, Beier JI, Cave MC. Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab008. [PMID: 34548932 PMCID: PMC8448424 DOI: 10.1093/eep/dvab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 05/30/2023]
Abstract
Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Liqing He
- Department of Chemistry, University of Louisville College of Arts and Sciences, Louisville, KY 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville College of Arts and Sciences, Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
| | - Jianmin Pan
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shesh N Rai
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY 40292, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
| | - Kalina Andreeva
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, JB Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Louisville, KY 40292, USA
- Pittsburgh Liver Research Center (PLRC), Louisville, KY 40292, USA
- Department of Environmental and Occupational Health Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew C Cave
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), Louisville, KY 40292, USA
- University of Louisville Hepatobiology and Toxicology Center, Louisville, KY 40292, USA
- University of Louisville Alcohol Research Center, Louisville, KY 40292, USA
- The University of Louisville Superfund Research Center, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
11
|
Ghazi T, Nagiah S, Chuturgoon AA. Fusaric acid induces hepatic global m6A RNA methylation and differential expression of m6A regulatory genes in vivo - a pilot study. Epigenetics 2021; 17:695-703. [PMID: 34517792 DOI: 10.1080/15592294.2021.1975937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant epitranscriptomic mark that regulates gene expression to execute cellular developmental programmes and environmental adaptation. Fusaric acid (FA) is a mycotoxin that contaminates agricultural foods and exerts toxicity in humans and animals; however, its epitranscriptomic effects are unclear. We investigated the effect of FA on global m6A RNA methylation and mRNA expression levels of key m6A regulatory genes in C57BL/6 mouse livers. C57BL/6 mice (n = 6/group) were orally administered 0.1 M phosphate-buffered saline (PBS) or 50 mg/kg FA. Mice were euthanized 24 h after oral administration, livers were harvested, and RNA was isolated. RNA samples were assayed for global m6A levels using an m6A RNA Methylation Quantification Kit. The mRNA expression of m6A regulators i.e. writers, erasers, and readers were measured by qRT-PCR. FA increased global m6A RNA methylation (p < 0.0001) in mouse livers. FA increased the expression of METTL3 (p = 0.0143) and METTL14 (p = 0.0281), and decreased the expression of FTO (p = 0.0036) and ALKBH5 (p = 0.0035). The expression of YTHDF2 (p = 0.0007), YTHDF3 (p = 0.0061), and YTHDC2 (p = 0.0258) were increased by FA in mouse livers. This study shows that the liver m6A epitranscriptome can be modified by FA exposure in an in vivo model and can be useful for identifying the molecular mechanisms whereby m6A RNA modifications influence the toxicological outcomes of FA exposure.
Collapse
Affiliation(s)
- Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Huang Z, Pan J, Wang H, Du X, Xu Y, Wang Z, Chen D. Prognostic Significance and Tumor Immune Microenvironment Heterogenicity of m5C RNA Methylation Regulators in Triple-Negative Breast Cancer. Front Cell Dev Biol 2021; 9:657547. [PMID: 33928086 PMCID: PMC8076743 DOI: 10.3389/fcell.2021.657547] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose The m5C RNA methylation regulators are closely related to tumor proliferation, occurrence, and metastasis. This study aimed to investigate the gene expression, clinicopathological characteristics, and prognostic value of m5C regulators in triple-negative breast cancer (TNBC) and their correlation with the tumor immune microenvironment (TIM). Methods The TNBC data, Luminal BC data and HER2 positive BC data set were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, and 11 m5C RNA methylation regulators were analyzed. Univariate Cox regression and the least absolute shrinkage and selection operator regression models were used to develop a prognostic risk signature. The UALCAN and cBioportal databases were used to analyze the gene characteristics and gene alteration frequency of prognosis-related m5C RNA methylation regulators. Gene set enrichment analysis was used to analyze cellular pathways enriched by prognostic factors. The Tumor Immune Single Cell Hub (TISCH) and Timer online databases were used to explore the relationship between prognosis-related genes and the TIM. Results Most of the 11 m5C RNA methylation regulators were differentially expressed in TNBC and normal samples. The prognostic risk signature showed good reliability and an independent prognostic value. Prognosis-related gene mutations were mainly amplified. Concurrently, the NOP2/Sun domain family member 2 (NSUN2) upregulation was closely related to spliceosome, RNA degradation, cell cycle signaling pathways, and RNA polymerase. Meanwhile, NSUN6 downregulation was related to extracellular matrix receptor interaction, metabolism, and cell adhesion. Analysis of the TISCH and Timer databases showed that prognosis-related genes affected the TIM, and the subtypes of immune-infiltrating cells differed between NSUN2 and NSUN6. Conclusion Regulatory factors of m5C RNA methylation can predict the clinical prognostic risk of TNBC patients and affect tumor development and the TIM. Thus, they have the potential to be a novel prognostic marker of TNBC, providing clues for understanding the RNA epigenetic modification of TNBC.
Collapse
Affiliation(s)
- Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Junfan Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Helin Wang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Xianqiang Du
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yusheng Xu
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Zhitang Wang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Debo Chen
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
13
|
Li J, Zhang C, Yuan X, Cao Y. Molecular Characteristics of N1-Methyladenosine Regulators and Their Correlation with Overall Cancer Survival. DNA Cell Biol 2021; 40:513-522. [PMID: 33416433 DOI: 10.1089/dna.2020.6214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N1-methyladenosine (m1A) is a prevalent RNA modification widely affecting RNA structural stability, folding, and interactions with proteins. Recently, there have been increasing reports on the roles of m1A regulators in tumors. However, their mechanisms and clinical relevance remain unclear. This study systematically evaluates the epigenetic characteristics and clinical relevance of m1A regulators using bioinformatic methods. Our results show widespread gene expression changes for m1A regulators, which are related to the activation and inhibition of carcinogenic pathways and overall patient survival. Collectively, this investigation provides new insights into assessing tumor prognosis and targeted therapy.
Collapse
Affiliation(s)
- Juan Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Department of Infectious Diseases and The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Chunting Zhang
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Department of Infectious Diseases and The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xin Yuan
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.,Department of Infectious Diseases and The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuan Cao
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|