1
|
Yang JW, Khorsandi D, Trabucco L, Ahmed M, Khademhosseini A, Dokmeci MR, Ye JY, Jucaud V. Liver-on-a-Chip Integrated with Label-Free Optical Biosensors for Rapid and Continuous Monitoring of Drug-Induced Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403560. [PMID: 39212623 PMCID: PMC11602353 DOI: 10.1002/smll.202403560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Drug toxicity assays using conventional 2D static cultures and animal studies have limitations preventing the translation of potential drugs to the clinic. The recent development of organs-on-a-chip platforms provides promising alternatives for drug toxicity/screening assays. However, most studies conducted with these platforms only utilize single endpoint results, which do not provide real-time/ near real-time information. Here, a versatile technology is presented that integrates a 3D liver-on-a-chip with a label-free photonic crystal-total internal reflection (PC-TIR) biosensor for rapid and continuous monitoring of the status of cells. This technology can detect drug-induced liver toxicity by continuously monitoring the secretion rates and levels of albumin and glutathione S-transferase α (GST-α) of a 3D liver on-a-chip model treated with Doxorubicin. The PC-TIR biosensor is based on a one-step antibody functionalization with high specificity and a detection range of 21.7 ng mL-1 to 7.83 x 103 ng mL-1 for albumin and 2.20 ng mL-1 to 7.94 x 102 ng mL-1 for GST-α. This approach provides critical advantages for the early detection of drug toxicity and improved temporal resolution to capture transient drug effects. The proposed proof-of-concept study introduces a scalable and efficient plug-in solution for organ-on-a-chip technologies, advancing drug development and in vitro testing methods by enabling timely and accurate toxicity assessments.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Luis Trabucco
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Maisha Ahmed
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| | - Jing Yong Ye
- The University of Texas at San Antonio, Department of Biomedical Engineering and Chemical Engineering, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 21100 Erwin St, Woodland Hills, CA 91367, USA
| |
Collapse
|
2
|
Leal F, Zeiringer S, Jeitler R, Costa PF, Roblegg E. A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models. Tissue Barriers 2024; 12:2163820. [PMID: 36680530 PMCID: PMC10832944 DOI: 10.1080/21688370.2022.2163820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.
Collapse
Affiliation(s)
- Filipa Leal
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Scarlett Zeiringer
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| |
Collapse
|
3
|
Mizoi K, Okada R, Mashimo A, Masuda N, Itoh M, Ishida S, Yamazaki D, Ogihara T. Novel Screening System for Biliary Excretion of Drugs Using Human Cholangiocyte Organoid Monolayers with Directional Drug Transport. Biol Pharm Bull 2024; 47:427-433. [PMID: 38369341 DOI: 10.1248/bpb.b23-00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.
Collapse
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- School of Pharmacy, International University of Health and Welfare
| | - Ryo Okada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Arisa Mashimo
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- Kendai Translational Research Center (KTRC)
| | - Norio Masuda
- MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. (MBL)
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Seiichi Ishida
- Division of Applied Life Science, Graduate School of Engineering, Sojo University
| | - Daiju Yamazaki
- Division of Pharmacology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
4
|
Bao G, Yang P, Yi J, Peng S, Liang J, Li Y, Guo D, Li H, Ma K, Yang Z. Full-sized realistic 3D printed models of liver and tumour anatomy: a useful tool for the clinical medicine education of beginning trainees. BMC MEDICAL EDUCATION 2023; 23:574. [PMID: 37582729 PMCID: PMC10428657 DOI: 10.1186/s12909-023-04535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Simulation-based medical education (SBME) and three-dimensional printed (3DP) models are increasingly used in continuing medical education and clinical training. However, our understanding of their role and value in improving trainees' understanding of the anatomical and surgical procedures associated with liver surgery remains limited. Furthermore, gender bias is also a potential factor in the evaluation of medical education. Therefore, the aim of this study was to evaluate the educational benefits trainees receive from the use of novel 3DP liver models while considering trainees' experience and gender. METHODS Full-sized 3DP liver models were developed and printed using transparent material based on anonymous CT scans. We used printed 3D models and conventional 2D CT scans of the liver to investigate thirty trainees with various levels of experience and different genders in the context of both small group teaching and formative assessment. We adopted a mixed methods approach involving both questionnaires and focus groups to collect the views of different trainees and monitors to assess trainees' educational benefits and perceptions after progressing through different training programs. We used Objective Structured Clinical Examination (OSCE) and Likert scales to support thematic analysis of the responses to the questionnaires by trainees and monitors, respectively. Descriptive analyses were conducted using SPSS statistical software version 21.0. RESULTS Overall, a 3DP model of the liver is of great significance for improving trainees' understanding of surgical procedures and cooperation during operation. After viewing the personalized full-sized 3DP liver model, all trainees at the various levels exhibited significant improvements in their understanding of the key points of surgery (p < 0.05), especially regarding the planned surgical procedure and key details of the surgical procedures. More importantly, the trainees exhibited higher levels of satisfaction and self-confidence during the operation regardless of gender. However, with regard to gender, the results showed that the improvement of male trainees after training with the 3DP liver model was more significant than that of female trainees in understanding and cooperation during the surgical procedure, while no such trend was found with regard to their understanding of the base knowledge. CONCLUSION Trainees and monitors agreed that the use of 3DP liver models was acceptable. The improvement of the learning effect for practical skills and theoretical understanding after training with the 3DP liver models was significant. This study also indicated that training with personalized 3DP liver models can improve all trainees' presurgical understanding of liver tumours and surgery and males show more advantage in understanding and cooperation during the surgical procedure as compared to females. Full-sized realistic 3DP models of the liver are an effective auxiliary teaching tool for SBME teaching in Chinese continuing medical education.
Collapse
Affiliation(s)
- Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiangpu Yi
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiahe Liang
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajie Li
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Dian Guo
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Haoran Li
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Kejun Ma
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
5
|
Wu X, Jiang D, Yang Y, Li S, Ding Q. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:6. [PMID: 36864321 PMCID: PMC9981852 DOI: 10.1186/s13619-022-00148-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/01/2022] [Indexed: 03/04/2023]
Abstract
Preclinical models that can accurately predict the toxicity and efficacy of candidate drugs to human liver tissue are in urgent need. Human liver organoid (HLO) derived from human pluripotent stem cells offers a possible solution. Herein, we generated HLOs, and demonstrated the utility of these HLOs in modeling a diversity of phenotypes associated with drug-induced liver injury (DILI), including steatosis, fibrosis, and immune responses. Phenotypic changes in HLOs after treatment with tool compounds such as acetaminophen, fialuridine, methotrexate, or TAK-875 showed high concordance with human clinical data in drug safety testings. Moreover, HLOs were able to model liver fibrogenesis induced by TGFβ or LPS treatment. We further devised a high-content analysis system, and established a high-throughput anti-fibrosis drug screening system using HLOs. SD208 and Imatinib were identified that can significantly suppress fibrogenesis induced by TGFβ, LPS, or methotrexate. Taken together, our studies demonstrated the potential applications of HLOs in drug safety testing and anti-fibrotic drug screening.
Collapse
Affiliation(s)
- Xiaoshan Wu
- grid.28056.390000 0001 2163 4895School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 P. R. China ,grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 P. R. China ,School of Pharmacy, Fujian Health College, Fujian, 350101 P. R. China
| | - Dacheng Jiang
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 P. R. China
| | - Yi Yang
- grid.28056.390000 0001 2163 4895School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Qiurong Ding
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China. .,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China. .,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
6
|
Diprospero TJ, Brown LG, Fachko TD, Lockett MR. HepaRG cells undergo increased levels of post-differentiation patterning in physiologic conditions when maintained as 3D cultures in paper-based scaffolds. RESEARCH SQUARE 2023:rs.3.rs-2473387. [PMID: 36711963 PMCID: PMC9882668 DOI: 10.21203/rs.3.rs-2473387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions. Despite this decreased function, transcript levels suggest the cells undergo increased polarization and adopt a biliary-like character in the paper scaffolds, including the increased expression of transporter proteins (e.g., ABCB11 and SLOC1B1) and the KRT19 cholangiocyte marker. When exposed to representative periportal or perivenous culture conditions, we observed in vivo zonal-like patterns, including increased cytochrome P450 (CYP) activity and transcript levels in the perivenous condition. This increased CYP activity is more pronounced in the laden configuration, supporting the need to include multiple aspects of the liver microenvironment to observe the post-differentiation processing of hepatocytes.
Collapse
|
7
|
Mizoi K, Kobayashi M, Mashimo A, Matsumoto E, Masuda N, Itoh M, Ueno T, Tachiki H, Ishida S, Ogihara T. Directional Drug Transport through Membrane-Supported Monolayers of Human Liver-Derived Cell Lines. Biol Pharm Bull 2022; 45:150-153. [PMID: 34980776 DOI: 10.1248/bpb.b21-00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work is to develop a new assay system for screening biliary excretion drugs. When monolayers of human liver-derived cell lines HepG2 and Huh-7 were grown on an insert membrane, the efflux ratio (ER: ratio of the apparent permeability coefficient in the basal-to-apical direction (Papp,B-to-A) to that in the apical to basal direction (Papp,A-to-B)) of sulfobromophthalein (BSP), a model substrate of multidrug resistance-associated protein 2 (MRP2), was greater than 1.0, indicating transport of BSP in the efflux direction. The efflux transport was significantly suppressed by MK-571, an inhibitor of MRPs, in both cell lines. Expression of MRP2 mRNA in HepG2 and Huh-7 was 3.5- and 1.4-fold higher, respectively, than in primary human hepatocytes, while expression of P-glycoprotein and breast cancer resistance protein mRNAs was markedly lower, supporting the idea that MRP2 is the main mediator of directional BSP transport in this assay system. The advantage of our system is the potential to quantitatively evaluate biliary excretion of MRP2 substrates in vitro.
Collapse
Affiliation(s)
- Kenta Mizoi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | | | - Arisa Mashimo
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Eiko Matsumoto
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation
| | | | | | - Seiichi Ishida
- Center for Biological Safety and Research, National Institute of Health Sciences.,Department of Applied Life Science, Graduate School of Engineering, Sojo University
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
8
|
Matakovic L, Overeem AW, Klappe K, van IJzendoorn SCD. Induction of Bile Canaliculi-Forming Hepatocytes from Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2544:71-82. [PMID: 36125710 DOI: 10.1007/978-1-0716-2557-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell polarity and formation of bile canaliculi can be achieved in hepatocytes which are generated from patient-derived induced pluripotent stem cells. This allows for the study of endogenous mutant proteins, patient-specific pathogenesis, and drug responses for diseases where hepatocyte polarity and bile canaliculi play a key role. Here, we describe a step-by-step protocol for the generation of bile canaliculi-forming hepatocytes from induced pluripotent stem cells and their evaluation.
Collapse
Affiliation(s)
- Lavinija Matakovic
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
10
|
Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, Atallah DS, Hachem R, Ott-Peron N, Stuart JA. Vertebrate cell culture as an experimental approach – limitations and solutions. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110570. [DOI: 10.1016/j.cbpb.2021.110570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
|
11
|
Single Cell Gene Expression Analysis in a 3D Microtissue Liver Model Reveals Cell Type-Specific Responses to Pro-Fibrotic TGF-β1 Stimulation. Int J Mol Sci 2021; 22:ijms22094372. [PMID: 33922101 PMCID: PMC8122664 DOI: 10.3390/ijms22094372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023] Open
Abstract
3D cell culture systems are widely used to study disease mechanisms and therapeutic interventions. Multicellular liver microtissues (MTs) comprising HepaRG, hTERT-HSC and THP-1 maintain multicellular interactions and physiological properties required to mimic liver fibrosis. However, the inherent complexity of multicellular 3D-systems often hinders the discrimination of cell type specific responses. Here, we aimed at applying single cell sequencing (scRNA-seq) to discern the molecular responses of cells involved in the development of fibrosis elicited by TGF-β1. To obtain single cell suspensions from the MTs, an enzymatic dissociation method was optimized. Isolated cells showed good viability, could be re-plated and cultured in 2D, and expressed specific markers determined by scRNA-seq, qRT-PCR, ELISA and immunostaining. The three cell populations were successfully clustered using supervised and unsupervised methods based on scRNA-seq data. TGF-β1 led to a fibrotic phenotype in the MTs, detected as decreased albumin and increased αSMA expression. Cell-type specific responses to the treatment were identified for each of the three cell types. They included HepaRG damage characterized by a decrease in cellular metabolism, prototypical inflammatory responses in THP-1s and extracellular matrix remodeling in hTERT-HSCs. Furthermore, we identified novel cell-specific putative fibrosis markers in hTERT-HSC (COL15A1), and THP-1 (ALOX5AP and LAPTM5).
Collapse
|
12
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
13
|
Liang R, Wang Z, Kong X, Xiao X, Chen T, Yang H, Li Y, Zhao X. Differentiation of Human Parthenogenetic Embryonic Stem Cells into Functional Hepatocyte-like Cells. Organogenesis 2020; 16:137-148. [PMID: 33236954 DOI: 10.1080/15476278.2020.1848237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Stem cell and tissue engineering-based therapies for acute liver failure (ALF) have been limited by the lack of an optimal cell source. We aimed to determine the suitability of human parthenogenetic embryonic stem cells (hPESCs) for the development of strategies to treat ALF. We studied the ability of human parthenogenetic embryonic stem cells (hPESCs) with high whole-genome SNP homozygosity, which were obtained by natural activation during in vitro fertilization (IVF), to differentiate into functional hepatocyte-like cells in vitro by monolayer plane orientation. hPESCs were induced on a single-layer flat plate for 21 d in complete medium with the inducers activin A, FGF-4, BMP-2, HGF, OSM, DEX, and B27. Polygonal cell morphology and binuclear cells were observed after 21 d of induction by using an inverted microscope. RT-qPCR results showed that the levels of hepatocyte-specific genes such as AFP, ALB, HNF4a, CYP3A4, SLCO1B3, and ABCC2 significantly increased after induction. Immunocytochemical assay showed CK18 and Hepa expression in the induced cells. Indocyanine green (ICG) staining showed that the cells had the ability to absorb and metabolize dyes. Detection of marker proteins and urea in cell culture supernatants showed that the cells obtained after 21 d of induction had synthetic and secretory functions. The typical ultrastructure of liver cells was observed using TEM after 21 d of induction. The results indicate that naturally activated hPESCs can be induced to differentiate into hepatocellular cells by monolayer planar induction.
Collapse
Affiliation(s)
- Rui Liang
- Department of Pathology, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Zhiqiang Wang
- Department of General Surgery, The Second Hospital of Tianjin Medical University , Tianjin, China
| | - Xiangyang Kong
- School of Medicine, Kunming University of Science and Technology , Kunming, China
| | - Xiaoxiao Xiao
- Faculty of Chinese medicine, Macau University of Science and Technology , Macao, China
| | - Tianxing Chen
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Hui Yang
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Ying Li
- Department of Pathology, The First People's Hospital of Yunnan Province , Kunming, China
| | - Xingqi Zhao
- College of Life Sciences, Nanjing Normal University , Nanjing, China
| |
Collapse
|