1
|
Govindaiah PM, Maheswarappa NB, Banerjee R, Muthukumar M, Manohar BB, Mishra BP, Sen AR, Biswas AK. Decoding halal and jhatka slaughter: novel insights into welfare and protein biomarkers in slow-growing broiler chicken. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9160-9168. [PMID: 38988214 DOI: 10.1002/jsfa.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The first evidence of blood biochemical and proteomic changes in slow-growing broiler chicken subjected to ritual slaughter like halal (HS) and jhatka (JS) without stunning and commercial slaughter with electrical stunning (ES) was decoded. RESULTS Significant stress indicators like cortisol and triiodothyronine were markedly elevated in JS birds, whereas increased (P < 0.05) levels of lactate dehydrogenase and creatine kinase were observed in JS and ES birds. Two-dimensional gel electrophoresis coupled to MALDI-TOF MS elucidated the overabundance of glyceraldehyde-3-phosphate dehydrogenase and l-lactate dehydrogenase that are positively correlated with stress in JS broilers. Bioinformatic analysis explored the multifaceted landscape of molecular functions. CONCLUSION The study has uncovered that ritual slaughter performed without stunning against commercial slaughter with ES practices elicit varying levels of stress as evident from blood biochemistry and novel protein markers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Prasad M Govindaiah
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rituparna Banerjee
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Hyderabad, India
| | | | - Balaji B Manohar
- Meat Proteomics Lab, ICAR-National Meat Research Institute, Hyderabad, India
| | - Bidyut Prava Mishra
- Department of Livestock Products Technology, College of Veterinary Science & Animal Husbandry, OUAT, Bhubaneswar, India
| | - Arup R Sen
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashim K Biswas
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
2
|
Tang J, Chen L, Chang Y, Hang D, Chen G, Wang Y, Feng L, Xu M. ZBTB7A interferes with the RPL5-P53 feedback loop and reduces endoplasmic reticulum stress-induced apoptosis of pancreatic cancer cells. Mol Carcinog 2024; 63:1783-1799. [PMID: 38896079 DOI: 10.1002/mc.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Endoplasmic reticulum (ER) stress is a primary mechanism leading to cell apoptosis, making it of great research interests in cancer management. This study delves into the function of ribosomal protein L5 (RPL5) in ER stress within pancreatic cancer (PCa) cells and investigates its regulatory mechanisms. Bioinformatics predictions pinpointed RPL5 as an ER stress-related gene exhibiting diminished expression in PCa. Indeed, RPL5 was found to be poorly expressed in PCa tissues and cells, with this reduced expression correlating with an unfavorable prognosis. Moreover, RPL5 overexpression led to heightened levels of p-PERK, p-eIF2α, and CHOP, bolstering the proapoptotic effect of Tunicamycin, an ER stress activator, on PCa cells. Additionally, the RPL5 overexpression curbed cell proliferation, migration, and invasion. Tunicamycin enhanced the binding between RPL5 and murine double minute 2 (MDM2), thus suppressing MDM2-mediated ubiquitination and degradation of P53. Consequently, P53 augmentation intensified ER stress, which further enhanced the binding between RPL5 and MDM2 through PERK-dependent eIF2α phosphorylation, thereby establishing a positive feedback loop. Zinc finger and BTB domain containing 7A (ZBTB7A), conspicuously overexpressed in PCa samples, repressed RPL5 transcription, thereby reducing P53 expression. Silencing of ZBTB7A heightened ER stress and subdued the malignant attributes of PCa cells, effects counteracted upon RPL5 silencing. Analogous outcomes were recapitulated in vivo employing a xenograft tumor mouse model, where ZBTB7A silencing dampened the tumorigenic potential of PCa cells, an effect reversed by additional RPL5 silencing. In conclusion, this study suggests that ZBTB7A represses RPL5 transcription, thus impeding the RPL5-P53 feedback loop and mitigating ER-induced apoptosis in PCa cells.
Collapse
Affiliation(s)
- Jie Tang
- Department of Gastroenterology, Shanghai Hongkou District Jiangwan Hospital, Shanghai, P.R. China
| | - Lingling Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Yunli Chang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Dongyun Hang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Guoyu Chen
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ying Wang
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Lingmei Feng
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Shanghai Pudong New Area People's Hospital, Shanghai, P.R. China
| |
Collapse
|
3
|
Veale A, Reudink MW, Burg TM. Neutral markers reveal complex population structure across the range of a widespread songbird. Ecol Evol 2024; 14:e11638. [PMID: 38979005 PMCID: PMC11228359 DOI: 10.1002/ece3.11638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Understanding how both contemporary and historical physical barriers influence gene flow is key to reconstructing evolutionary histories and can allow us to predict species' resilience to changing environmental conditions. During the last glacial maximum (LGM), many high latitude North American bird species were forced into glacial refugia, including mountain bluebirds (Silia currucoides). Within their current breeding range, mountain bluebirds still experience a wide variety of environmental conditions and barriers that may disrupt gene flow and isolate populations. Using single nucleotide polymorphisms (SNPs) obtained through restriction site-associated DNA sequencing, we detected at least four genetically distinct mountain bluebird populations. Based on this structure, we determined that isolation-by-distance, the northern Rocky Mountains, and discontinuous habitat are responsible for the low connectivity and the overall history of each population going back to the last glacial maximum. Finally, we identified five candidate genes under balancing selection and three loci under diversifying selection. This study provides the first look at connectivity and gene flow across the range of these high-altitude and high latitude songbirds.
Collapse
Affiliation(s)
- Aaron Veale
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Matthew W. Reudink
- Department of Biological SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Theresa M. Burg
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| |
Collapse
|
4
|
Bastaki NK, Albarjas TA, Almoosa FA, Al-Adsani AM. Chronic heat stress induces the expression of HSP genes in the retina of chickens (Gallus gallus). Front Genet 2023; 14:1085590. [PMID: 37077545 PMCID: PMC10106695 DOI: 10.3389/fgene.2023.1085590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Chronic heat stress during summer is a major challenge imposed by global warming. Chickens are more sensitive to heat stress than mammals because they lack sweat glands. Thus, chickens are more susceptible to heat stress during summer than other seasons. Induction of heat shock protein (HSP) genes is one of the primary defense mechanisms against heat stress. Tissue-specific responses exhibited by different classes of HSPs upon exposure to heat stress have been reported previously in different tissues including the heart, kidney, intestine, blood, and muscle, but not in the retina. Therefore, this study aimed to investigate the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress.Methods: This study was conducted during the summers of 2020 and 2021 in Kuwait. Chickens (Gallus gallus) were divided into control and heat-treated groups and sacrificed at different developmental stages. Retinas were extracted and analyzed by using Real Time quantitative Polymerase Chain Reaction (RT-qPCR).Results: Our results from the summer of 2021 were similar to that from the summer of 2020, regardless of whether GAPDH or RPL5 was used as a gene normalizer. All five HSP genes were upregulated in the retina of 21-day-old heat-treated chickens and stayed upregulated until 35 days of age, with the exception of HSP40, which was downregulated. The addition of two more developmental stages in the summer of 2021 showed that at 14 days, all HSP genes were upregulated in the retina of heat-treated chickens. In contrast, at 28 days, HSP27 and HSP40 were downregulated, whereas HSP60, HSP70, and HSP90 were upregulated. Furthermore, our results showed that under chronic heat stress, the highest upregulation of HSP genes was seen at the earliest developmental stages.Discussion: To the best of our knowledge, this is the first study to report the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Some of our results match the previously reported expression levels of some HSPs in other tissues under heat stress. These results suggest that HSP gene expression can be used as a biomarker for chronic heat stress in the retina.
Collapse
|
5
|
Hasanpur K, Hosseinzadeh S, Mirzaaghayi A, Alijani S. Investigation of chicken housekeeping genes using next-generation sequencing data. Front Genet 2022; 13:827538. [PMID: 36176302 PMCID: PMC9514876 DOI: 10.3389/fgene.2022.827538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate normalization of the gene expression assays, using housekeeping genes (HKGs), is critically necessary. To do so, selection of a proper set of HKGs for a specific experiment is of great importance. Despite many studies, there is no consensus about the suitable set of HKGs for implementing in the quantitative real-time PCR analyses of chicken tissues. A limited number of HKGs have been widely used. However, wide utilization of a little number of HKGs for all tissues is challenging. The emergence of high-throughput gene expression RNA-seq data has enabled the simultaneous comparison of the stability of multiple HKGs. Therefore, employing the average coefficient of variations of at least three datasets per tissue, we sorted all reliably expressed genes (REGs; with FPKM ≥ 1 in at least one sample) and introduced the top 10 most suitable and stable reference genes for each of the 16 chicken tissues. We evaluated the consistency of the results of five tissues using the same methodology on other datasets. Furthermore, we assessed 96 previously widely used HKGs (WU-HKGs) in order to challenge the accuracy of the previous studies. The New Tuxedo software suite was used for the main analyses. The results revealed novel, different sets of reference genes for each of the tissues with 17 common genes among the top 10 genes lists of 16 tissues. The results did disprove the suitability of WU-HKGs such as Actb, Ldha, Scd, B2m, and Hprt1 for any of the tissues examined. On the contrary, a total of 6, 13, 14, 23, and 32 validated housekeeping genes (V-HKGs) were discovered as the most stable and suitable reference genes for muscle, spleen, liver, heart, and kidney tissues, respectively. Although we identified a few new HKGs usable for multiple tissues, the selection of suitable HKGs is required to be tissue specific. The newly introduced reference genes from the present study, despite lacking experimental validation, will be able to contribute to the more accurate normalization for future expression analysis of chicken genes.
Collapse
|
6
|
Wang Y, Wu Z, Fang T, Zhang Y, Chen L, Du Z, Yang C. Identification of internal reference genes for porcine immature Sertoli cells under heat stress. Reprod Domest Anim 2022; 57:1344-1352. [DOI: 10.1111/rda.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Yi Wang
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| | - Zi‐Wei Wu
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| | - Ting Fang
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| | - Yu‐Qing Zhang
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| | - Lu Chen
- College of Animal Science and Technology Northeast Agricultural University 150030 Harbin Heilongjiang China
| | - Zhi‐Qiang Du
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| | - Cai‐Xia Yang
- College of Animal Science Yangtze University 434025 Jingzhou Hubei China
| |
Collapse
|
7
|
Lee J, Kim YH, Kim K, Kim D, Lee SH, Kim S. Selection of stable reference genes for quantitative real-time PCR in the Varroa mite, Varroa destructor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21905. [PMID: 35393698 DOI: 10.1002/arch.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
To investigate the acaricide toxicity and resistance mechanisms in the Varroa mite, it is essential to understand the genetic responses of Varroa mites to acaricides, which are usually evaluated by transcriptional profiling based on quantitative real-time polymerase chain reaction (qPCR). In this study, to select reference genes showing consistent expression patterns regardless of the acaricide treatment or the type of tissue, Varroa mites treated with each of the three representative acaricides (coumaphos, fluvalinate, and amitraz) were processed for transcriptomic analysis, from which eight genes (NADH dehydrogenase [NADHD], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], eukaryotic translation elongation factor 1 α 1 [eEF1A1], eukaryotic translation elongation factor 2 [eEF2], ribosomal protein L5 [RpL5], Actin, tubulin α-1D chain [α-tubulin], and Rab1) were selected as candidates. The transcription profiles of these genes, depending on the treatment of the three acaricides or across different tissues (cuticle, legs, gut/fat bodies, and synganglion), were analyzed using qPCR with four validation programs, BestKeeper, geNorm, NormFinder, and RefFinder. Following acaricide treatment, eEF1A1 and NADHD showed the least variation in their expression levels, whereas the expression levels of α-tubulin and RpL5 were the most stable across different tissue groups. Rab1/GAPDH and Actin/eEF2 showed the least stable expression patterns following acaricide treatments and across different tissues, respectively, requiring precautions for use. When vitellogenin gene expression was analyzed by different reference genes, its expression profiles varied significantly depending on the reference genes, highlighting the importance of proper reference gene use. Thus, it is recommended using eEF1A1 and NADHD as reference genes for the comparison of the effects of acaricide on the whole body, whereas α-tubulin and RpL5 are recommended for investigating the tissue-specific expression profiles of target genes.
Collapse
Affiliation(s)
- Joonhee Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Kyungmun Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Dongwon Kim
- Division of Apiculture, Department of Agricultural Biology, National Institute of Agricultural Science, RDA, Wanju, Republic of Korea
| | - Si Hyeock Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|