1
|
Knockenhauer KE, Copeland RA. The importance of binding kinetics and drug-target residence time in pharmacology. Br J Pharmacol 2024; 181:4103-4116. [PMID: 37160660 DOI: 10.1111/bph.16104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
A dominant assumption in pharmacology throughout the 20th century has been that in vivo target occupancy-and attendant pharmacodynamics-depends on the systemic concentration of drug relative to the equilibrium dissociation constant for the drug-target complex. In turn, the duration of pharmacodynamics is temporally linked to the systemic pharmacokinetics of the drug. Yet, there are many examples of drugs for which pharmacodynamic effect endures long after the systemic concentration of a drug has waned to (equilibrium) insignificant levels. To reconcile such data, the drug-target residence time model was formulated, positing that it is the lifetime (or residence time) of the binary drug-target complex, and not its equilibrium affinity per se, that determines the extent and duration of drug pharmacodynamics. Here, we review this model, its evolution over time, and its applications to natural ligand-macromolecule biology and synthetic drug-target pharmacology.
Collapse
|
2
|
Zhang Y, Wei R, Song G, Yang X, Zhang M, Liu W, Xiong A, Zhang X, Li Q, Yang WJ, Han C, Liu R, Hu C, Wang Q, Zhu J, Shan Y. Insights into the mechanisms of serplulimab: a distinctive anti-PD-1 monoclonal antibody, in combination with a TIGIT or LAG3 inhibitor in preclinical tumor immunotherapy studies. MAbs 2024; 16:2419838. [PMID: 39497266 PMCID: PMC11540081 DOI: 10.1080/19420862.2024.2419838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
With more than 20 anti-PD-1/PD-L1 antibodies currently marketed, anti-PD-1 therapy has become a cornerstone of tumor immunotherapy. These agents, however, exhibit notable disparities in their characteristics and clinical performance. For instance, in the field of small cell lung cancer (SCLC) where the majority of anti-PD-1 antibodies have yielded limited success, serplulimab produced impressive survival improvements and was approved for this indication by China's National Medical Products Administration. Serplulimab's marketing authorization application also received a positive opinion from the European Medicines Agency. Nevertheless, the molecular mechanism underpinning serplulimab's superiority over its competitors remains elusive. We characterized the differences between serplulimab with approved PD-1/PD-L1 inhibitors (pembrolizumab and nivolumab) in terms of their binding features and functions in vitro and anti-tumor activity in vivo. Cellular pathways underlying the efficacy of serplulimab were also investigated. In comparison to competitors, serplulimab robustly induces PD-1 receptor endocytosis while fostering weaker PD-1-CD28 cis interactions. This phenomenon could mitigate the dephosphorylation of CD28 by SHP2, thereby facilitating sustained and robust T cell activation. While serplulimab and pembrolizumab exhibited similar performance in vitro and in vivo studies, serplulimab consistently demonstrated superior tumor killing efficacy compared to pembrolizumab upon co-administration with anti-TIGIT or anti-LAG3 inhibitors. Mechanistically, the serplulimab combination effectively reduces tumor microenvironment Treg cell populations, augments effector and memory T cell populations, and more potently modulates genes associated with diverse facets of the immune system, surpassing the effects of the pembrolizumab combination. In summary, our data underscore serplulimab as a differentiated PD-1 monoclonal antibody with best-in-class therapeutic potential.
Collapse
Affiliation(s)
- Yizhou Zhang
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ruicheng Wei
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Ge Song
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xinyi Yang
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Mengli Zhang
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Wei Liu
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Aiying Xiong
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Xuehan Zhang
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Qianhao Li
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Wan-Jen Yang
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Chencheng Han
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Rui Liu
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Chen Hu
- Clinical Development, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Qingyu Wang
- Clinical Development, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Jun Zhu
- Executive Director Office, Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Yongqiang Shan
- Shanghai Innovation Center, Shanghai Henlius Biotech, Inc., Shanghai, China
| |
Collapse
|
3
|
Matsunaga R, Ujiie K, Inagaki M, Fernández Pérez J, Yasuda Y, Mimasu S, Soga S, Tsumoto K. High-throughput analysis system of interaction kinetics for data-driven antibody design. Sci Rep 2023; 13:19417. [PMID: 37990030 PMCID: PMC10663500 DOI: 10.1038/s41598-023-46756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023] Open
Abstract
Surface plasmon resonance (SPR) is widely used for antigen-antibody interaction kinetics analysis. However, it has not been used in the screening phase because of the low throughput of measurement and analysis. Herein, we proposed a high-throughput SPR analysis system named "BreviA" using the Brevibacillus expression system. Brevibacillus was transformed using a plasmid library containing various antibody sequences, and single colonies were cultured in 96-well plates. Sequence analysis was performed using bacterial cells, and recombinant antibodies secreted in the supernatant were immobilized on a sensor chip to analyze their interactions with antigens using high-throughput SPR. Using this system, the process from the transformation to 384 interaction analyses can be performed within a week. This system utility was tested using an interspecies specificity design of an anti-human programmed cell death protein 1 (PD-1) antibody. A plasmid library containing alanine and tyrosine mutants of all complementarity-determining region residues was generated. A high-throughput SPR analysis was performed against human and mouse PD-1, showing that the mutation in the specific region enhanced the affinity for mouse PD-1. Furthermore, deep mutational scanning of the region revealed two mutants with > 100-fold increased affinity for mouse PD-1, demonstrating the potential efficacy of antibody design using data-driven approach.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kan Ujiie
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mayuko Inagaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yoshiki Yasuda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinya Mimasu
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Shinji Soga
- Biologics Engineering, Discovery Intelligence, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki, 305-8585, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
4
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
5
|
Jalalizadeh M, Yadollahvandmiandoab R, Reis LO. Immune Checkpoint Glycoproteins Have Polymorphism: Are Monoclonal Antibodies Too Specific? Curr Oncol 2023; 30:1267-1274. [PMID: 36661747 PMCID: PMC9857673 DOI: 10.3390/curroncol30010098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Since the 2018 Nobel prize in medicine was granted to the discovery of immune escape by cancer cells, billions of dollars have been spent on a new form of cancer immunotherapy called immune checkpoint inhibition (ICI). In this treatment modality, monoclonal antibodies (mAbs) are used to block cell-surface glycoproteins responsible for cancer immune escape. However, only a subset of patients benefit from this treatment. In this commentary, we focus on the polymorphism in the target molecules of these mAbs, namely PD-1, PD-L1 and CTLA4; we explain that using a single mAb from one clone is unlikely to succeed in treating all humans because humans have a genotype and phenotype polymorphism in these molecules. Monoclonal antibodies are highly specific and are capable of recognizing only one epitope ("monospecific"), which makes them ideal for use in laboratory animals because these animals are generationally inbred and genetically identical (isogenic). In humans, however, the encoding genes for PD-1, PD-L1 and CTLA4 have variations (alleles), and the final protein products have phenotype polymorphism. This means that small differences exist in these proteins among individual humans, rendering one mAb too specific to cover all patients. Our suggestion for the next step in advancing this oncotherapy is to focus on methods to tailor the mAb treatment individually for each patient or replace a single clone of mAb with less specific alternatives, e.g., a "cocktail of mAbs", oligoclonal antibodies or recombinant polyclonal antibodies. Fortunately, there are ongoing clinical trials on oligoclonal antibodies at the moment.
Collapse
Affiliation(s)
- Mehrsa Jalalizadeh
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil
| | - Reza Yadollahvandmiandoab
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil
| | - Leonardo Oliveira Reis
- UroScience, School of Medical Sciences, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil
- Center for Life Sciences, Pontifical Catholic University of Campinas, PUC-Campinas, Campinas 13034-685, SP, Brazil
| |
Collapse
|
6
|
Erasmus MF, Dovner M, Ferrara F, D'Angelo S, Teixeira AA, Leal-Lopes C, Spector L, Hopkins E, Bradbury ARM. Determining the affinities of high-affinity antibodies using KinExA and surface plasmon resonance. MAbs 2023; 15:2291209. [PMID: 38088807 DOI: 10.1080/19420862.2023.2291209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Accurate and efficient affinity measurement techniques are essential for the biophysical characterization of therapeutic monoclonal antibodies, one of the fastest growing drug classes. Surface plasmon resonance (SPR) is widely used for determining antibody affinity, but does not perform well with extremely high affinity (low picomolar to femtomolar range) molecules. In this study, we compare the SPR-based Carterra LSA and the kinetic exclusion assay (KinExA) for measuring the affinities of 48 antibodies generated against the SARS-CoV-2 receptor-binding domain. These data reveal that high-affinity antibodies can be generated straight from selections using high-quality in vitro library platforms with 54% correspondence between affinities measured using LSA and KinExA. Generally, where there was a 2-fold or greater difference between LSA and KinExA, KinExA reported that affinities were tighter. We highlight the differences between LSA and KinExA, identifying the benefits and pitfalls of each in terms of dynamic range and throughput. Furthermore, we demonstrate for the first time that single-point screening with KinExA can significantly improve throughput while maintaining a strong correlation with full binding curve equilibrium measurements, enabling the accurate rank-ordering of clones with exceptionally tight binding properties.
Collapse
Affiliation(s)
| | | | | | - Sara D'Angelo
- Specifica, LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | | - Laura Spector
- Specifica, LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | |
Collapse
|
7
|
Abstract
In the computational design of antibodies, the interaction analysis between target antigen and antibody is an essential process to obtain feedback for validation and optimization of the design. Kinetic and thermodynamic parameters as well as binding affinity (KD) allow for a more detailed evaluation and understanding of the molecular recognition. In this chapter, we summarize the conventional experimental methods which can calculate KD value (ELISA, FP), analyze a binding activity to actual cells (FCM), and evaluate the kinetic and thermodynamic parameters (ITC, SPR, BLI), including high-throughput analysis and a recently developed experimental technique.
Collapse
Affiliation(s)
- Aki Tanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Richaud AD, Zaghouani M, Zhao G, Wangpaichitr M, Savaraj N, Roche SP. Exploiting the Innate Plasticity of the Programmed Cell Death-1 (PD1) Receptor to Design Pembrolizumab H3 Loop Mimics. Chembiochem 2022; 23:e202200449. [PMID: 36082509 PMCID: PMC10029098 DOI: 10.1002/cbic.202200449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Indexed: 11/08/2022]
Abstract
Checkpoint blockade of the immunoreceptor programmed cell death-1 (PD1) with its ligand-1 (PDL1) by monoclonal antibodies such as pembrolizumab provided compelling clinical results in various cancer types, yet the molecular mechanism by which this drug blocks the PD1/PDL1 interface remains unclear. To address this question, we examined the conformational motion of PD1 associated with the binding of pembrolizumab. Our results revealed that the innate plasticity of both C'D and FG loops is crucial to form a deep binding groove (371 Å3 ) across several distant epitopes of PD1. This analysis ultimately provided a rational-design to create pembrolizumab H3 loop mimics [RDYRFDMGFD] into β-hairpin scaffolds. As a result, a 20-residue long β-hairpin peptide 1 e was identified as a first-in-class potent PD1-inhibitor (EC50 of 0.29 μM; Ki of 41 nM).
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mehdi Zaghouani
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Niramol Savaraj
- Miller School of Medicine, University of Miami, Miami, FL 33458, USA
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Liu SV, Nagasaka M, Stefaniak V, Gruver K, Lin Y, Ferry D, Socinski MA, Zhang L. The Applicability of the Results in the Asian Population of ORIENT-11 to a Western Population According to the ICH-E5 Framework. Front Oncol 2022; 12:859892. [PMID: 35756655 PMCID: PMC9226396 DOI: 10.3389/fonc.2022.859892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Sintilimab combined with pemetrexed and platinum met the primary endpoint of improving progression-free survival (PFS) as a first-line therapy for nonsquamous non-small cell lung cancer (NSCLC) in the phase 3 trial ORIENT-11 (NCT03607539). As seen in similar trials, the addition of sintilimab, a PD-1 inhibitor, to chemotherapy improved the PFS without significantly worsening the toxicity, with improvements in response rate and duration of response. In contrast to previous trials, the ORIENT-11 trial was conducted completely in China. Both intrinsic and extrinsic factors are important to consider when reviewing foreign clinical trial data, as they may influence the efficacy and the safety outcomes. Here we discuss the applicability of ORIENT-11 clinical results to a Western population.
Collapse
Affiliation(s)
- Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Misako Nagasaka
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Irvine, CA, United States
| | | | - Kristi Gruver
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yong Lin
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - David Ferry
- Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Mark A Socinski
- Hematology and Oncology, AdventHealth Cancer Institute, Orlando, FL, United States
| | - Li Zhang
- Medical Oncology Department, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
10
|
Kasichayanula S, Mandlekar S, Shivva V, Patel M, Girish S. Evolution of Preclinical Characterization and Insights into Clinical Pharmacology of Checkpoint Inhibitors Approved for Cancer Immunotherapy. Clin Transl Sci 2022; 15:1818-1837. [PMID: 35588531 PMCID: PMC9372426 DOI: 10.1111/cts.13312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer immunotherapy has significantly advanced the treatment paradigm in oncology, with approvals of immuno‐oncology agents for over 16 indications, many of them first line. Checkpoint inhibitors (CPIs) are recognized as an essential backbone for a successful anticancer therapy regimen. This review focuses on the US Food and Drug Administration (FDA) regulatory approvals of major CPIs and the evolution of translational advances since their first approval close to a decade ago. In addition, critical preclinical and clinical pharmacology considerations, an overview of the pharmacokinetic and dose/regimen aspects, and a discussion of the future of CPI translational and clinical pharmacology as combination therapy becomes a mainstay of industrial immunotherapy development and in clinical practice are also discussed.
Collapse
Affiliation(s)
| | | | - Vittal Shivva
- Genentech, 1 DNA Way, South San Francisco, 94080, CA
| | - Maulik Patel
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, 94080, CA
| | - Sandhya Girish
- Gilead Sciences, 310 Lakeside Drive, Foster City, 94404, CA
| |
Collapse
|
11
|
Jiang M, Dong T, Han C, Liu L, Zhang T, Kang Q, Wang P, Zhou F. Regenerable and high-throughput surface plasmon resonance assay for rapid screening of anti-SARS-CoV-2 antibody in serum samples. Anal Chim Acta 2022; 1208:339830. [PMID: 35525598 PMCID: PMC9006689 DOI: 10.1016/j.aca.2022.339830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
12
|
Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, Honnen W, Calianese D, Huang D, Peng L, Voss JE, Nemazee D, Burton DR, Pinter A, Bradbury ARM. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat Commun 2022; 13:462. [PMID: 35075126 PMCID: PMC8786865 DOI: 10.1038/s41467-021-27799-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization. The most potent neutralizing antibodies are typically generated from convalescent patients and immunized animals. Here, the authors show it is possible to generate highly potent human neutralizing antibodies against the SARS-CoV-2 spike protein directly from a semisynthetic naïve antibody library.
Collapse
Affiliation(s)
| | | | | | - Camila Leal-Lopes
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - André A Teixeira
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - David Calianese
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deli Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Linghan Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | |
Collapse
|
13
|
Zhang L, Geng Z, Hao B, Geng Q. Tislelizumab: A Modified Anti-tumor Programmed Death Receptor 1 Antibody. Cancer Control 2022; 29:10732748221111296. [PMID: 35926155 PMCID: PMC9358212 DOI: 10.1177/10732748221111296] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tislelizumab is an anti-programmed death receptor 1 (PD-1) monoclonal immunoglobulin G 4 antibody developed by BeiGene. The structure of tislelizumab has been modified to maximally inhibit the binding of PD-1 to programmed death ligand 1 (PD-L1) and minimize the binding of tislelizumab to Fcγ receptors. In clinical studies, tislelizumab has shown preliminary anti-tumor effects in various solid tumors, such as Hodgkin's lymphoma, urothelial carcinoma, lung cancer, gastric and esophageal cancer, liver cancer, nasopharyngeal carcinoma, colorectal cancer, and microsatellite instability-high/mismatch repair-deficient tumors. In addition, it also showed new promise in solid tumor treatment in combination with ociperlimab. Due to its satisfactory anti-tumor effects, tislelizumab has received approvals in China for the treatment of classical Hodgkin's lymphoma, urothelial carcinoma, squamous non-small cell lung cancer, non-squamous non-small cell lung cancer, and hepatocellular carcinoma, and it is now under investigation for a new indication in microsatellite instability-high/mismatch repair-deficient tumors. Moreover, it has been granted orphan designations in hepatocellular carcinoma, esophageal cancer, and gastric cancer, including cancer of the gastroesophageal junction, by the US Food and Drug Administration. Tislelizumab has an acceptable safety profile; the most common adverse effects include fatigue, anemia, and decreased neutrophil count, while the most fatal events have been related to respiratory infection or failure, and hepatic injury. Tislelizumab has an economic advantage compared with other well-studied PD-1/PD-L1 inhibitors; thus, the introduction of it could provide clinical oncologists with an effective weapon against tumors and may alleviate the burden of cancer patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Geng
- Department of Orthopedic Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Vander Mause ER, Atanackovic D, Lim CS, Luetkens T. Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends Biotechnol 2022; 40:875-890. [DOI: 10.1016/j.tibtech.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
|
15
|
Issafras H, Fan S, Tseng CL, Cheng Y, Lin P, Xiao L, Huang YJ, Tu CH, Hsiao YC, Li M, Chen YH, Ho CH, Li O, Wang Y, Chen S, Ji Z, Zhang E, Mao YT, Liu E, Yang S, Jiang W. Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy. PLoS One 2021; 16:e0257972. [PMID: 34972111 PMCID: PMC8719770 DOI: 10.1371/journal.pone.0257972] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapies, such as checkpoint blockade of programmed cell death protein-1 (PD-1), represents a breakthrough in cancer treatment, resulting in unprecedented results in terms of overall and progression-free survival. Discovery and development of novel anti PD-1 inhibitors remains a field of intense investigation, where novel monoclonal antibodies (mAbs) and novel antibody formats (e.g., novel isotype, bispecific mAb and low-molecular-weight compounds) are major source of future therapeutic candidates. HLX10, a fully humanized IgG4 monoclonal antibody against PD-1 receptor, increased functional activities of human T-cells and showed in vitro, and anti-tumor activity in several tumor models. The combined inhibition of PD-1/PDL-1 and angiogenesis pathways using anti-VEGF antibody may enhance a sustained suppression of cancer-related angiogenesis and tumor elimination. To elucidate HLX10's mode of action, we solved the structure of HLX10 in complex with PD-1 receptor. Detailed epitope analysis showed that HLX10 has a unique mode of recognition compared to the clinically approved PD1 antibodies Pembrolizumab and Nivolumab. Notably, HLX10's epitope was closer to Pembrolizumab's epitope than Nivolumab's epitope. However, HLX10 and Pembrolizumab showed an opposite heavy chain (HC) and light chain (LC) usage, which recognizes several overlapping amino acid residues on PD-1. We compared HLX10 to Nivolumab and Pembrolizumab and it showed similar or better bioactivity in vitro and in vivo, providing a rationale for clinical evaluation in cancer immunotherapy.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bevacizumab/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Cell Proliferation
- Epithelial-Mesenchymal Transition/drug effects
- Epitopes/immunology
- Humans
- Immunoglobulin Fab Fragments/metabolism
- Immunotherapy
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Ligands
- Macaca fascicularis
- Mice, Inbred NOD
- Mice, SCID
- Models, Molecular
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/therapy
- Nivolumab/chemistry
- Nivolumab/therapeutic use
- Programmed Cell Death 1 Receptor/chemistry
- Programmed Cell Death 1 Receptor/immunology
- Protein Binding
- Rats
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
| | - Shilong Fan
- National Protein Science Facility, Tsinghua University, Beijing, China
| | | | | | - Peihua Lin
- Hengenix Inc., Fremont, CA, United States of America
| | - Lisa Xiao
- Shanghai Henlius Biotech, Inc., Shanghai, P. R. China
| | | | | | | | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing, China
| | | | | | - Ou Li
- Hengenix Inc., Fremont, CA, United States of America
| | - Yanling Wang
- Hengenix Inc., Fremont, CA, United States of America
| | - Sandra Chen
- Anwita Biosciences, San Carlos, CA, United States of America
| | - Zhenyu Ji
- Shanghai Henlius Biotech, Inc., Shanghai, P. R. China
| | - Eric Zhang
- Shanghai Henlius Biotech, Inc., Shanghai, P. R. China
| | - Yi-Ting Mao
- Hengenix Inc., Fremont, CA, United States of America
| | - Eugene Liu
- Taipei Medical University, Taipei, Taiwan
| | - Shumin Yang
- Shanghai Henlius Biotech, Inc., Shanghai, P. R. China
| | - Weidong Jiang
- Hengenix Inc., Fremont, CA, United States of America
- Shanghai Henlius Biotech, Inc., Shanghai, P. R. China
| |
Collapse
|
16
|
Kareff SA, Samtani S, Burotto M, Prasad V, Kim C. Current Landscape of Immunotherapy Trials Involving the Programmed Cell Death Protein 1/Programmed Death-Ligand 1 Axis in Intrathoracic Tumors. JTO Clin Res Rep 2021; 2:100149. [PMID: 34590006 PMCID: PMC8474294 DOI: 10.1016/j.jtocrr.2021.100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction The clinical successes seen with anti–programmed cell death protein 1/programmed death-ligand 1 (anti–PD-[L]1) agents have galvanized the field of immuno-oncology. We evaluated the landscape and trends in immunotherapy trials involving the PD-(L)1 axis in intrathoracic tumors. Methods We identified clinical trials involving anti–PD-(L)1 agents on the ClinicalTrials.gov registry through November 13, 2020 for NSCLC, SCLC, mesothelioma, and thymic epithelial tumor. Clinical trials were indexed according to monotherapy versus combination approaches, PD-(L)1 agents under investigation, clinical settings, trial start date, and partner drug(s). We assessed redundancy among the clinical trials. Results We found 686 clinical trials investigating anti–PD-(L)1 agents for intrathoracic tumors (540 trials in NSCLC, 96 in SCLC, 38 in mesothelioma, and 12 in thymic epithelial tumor). A total of 23 PD-(L)1 inhibitors are undergoing clinical development. A total of 81% of trials assess combination treatment. The number of clinical trials has been growing exponentially in the past decade. PD-(L)1 blockade was frequently combined with chemotherapy or immunomodulatory therapy. Various strategies are in development to overcome resistance to PD-(L)1 blockade in metastatic NSCLC. PD-(L)1 blockade is also increasingly evaluated in neoadjuvant and adjuvant settings. After the U.S. Food and Drug Administration’s approval of an anti–PD-(L)1 agent for a specific indication, 14 trials were launched thereafter, which continued to randomize patients to treatments that were inferior to the best available therapy. Conclusions The number of clinical trials investigating anti–PD-(L)1 agents in intrathoracic tumors has experienced a steep increase over the past decade with a notable upward trend for combination trials. To reduce duplicative research efforts and accelerate the development of effective immunotherapeutics, improved coordination among key stakeholders and the adoption of innovative trial designs will be vital.
Collapse
Affiliation(s)
- Samuel A Kareff
- Department of Graduate Medical Education, MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Suraj Samtani
- Medical Oncology Service Bradford Hill, Santiago de Chile, Chile.,Intensive Care Unit, Clinica Alemana, Santiago, Chile
| | - Mauricio Burotto
- Medical Oncology Service Bradford Hill, Santiago de Chile, Chile.,Medical Oncology Service, Clinica Universidad de los Andes, Las Condes, Chile
| | - Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Chul Kim
- Georgetown Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, District of Columbia
| |
Collapse
|
17
|
Jankovics H, Kovacs B, Saftics A, Gerecsei T, Tóth É, Szekacs I, Vonderviszt F, Horvath R. Grating-coupled interferometry reveals binding kinetics and affinities of Ni ions to genetically engineered protein layers. Sci Rep 2020; 10:22253. [PMID: 33335217 PMCID: PMC7746762 DOI: 10.1038/s41598-020-79226-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Reliable measurement of the binding kinetics of low molecular weight analytes to their targets is still a challenging task. Often, the introduction of labels is simply impossible in such measurements, and the application of label-free methods is the only reliable choice. By measuring the binding kinetics of Ni(II) ions to genetically modified flagellin layers, we demonstrate that: (1) Grating-Coupled Interferometry (GCI) is well suited to resolve the binding of ions, even at very low protein immobilization levels; (2) it supplies high quality kinetic data from which the number and strength of available binding sites can be determined, and (3) the rate constants of the binding events can also be obtained with high accuracy. Experiments were performed using a flagellin variant incorporating the C-terminal domain of the nickel-responsive transcription factor NikR. GCI results were compared to affinity data from titration calorimetry. We found that besides the low-affinity binding sites characterized by a micromolar dissociation constant (Kd), tetrameric FliC-NikRC molecules possess high-affinity binding sites with Kd values in the nanomolar range. GCI enabled us to obtain real-time kinetic data for the specific binding of an analyte with molar mass as low as 59 Da, even at signals lower than 1 pg/mm2.
Collapse
Affiliation(s)
- Hajnalka Jankovics
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, Veszprém, Hungary
| | - Boglarka Kovacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Andras Saftics
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Tamas Gerecsei
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Éva Tóth
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, Veszprém, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Ferenc Vonderviszt
- Bio-Nanosystems Laboratory, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, Veszprém, Hungary
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege Miklós út 29-33, Budapest, Hungary.
| |
Collapse
|
18
|
Yuan TZ, Lujan Hernandez AG, Keane E, Liu Q, Axelrod F, Kailasan S, Noonan-Shueh M, Aman MJ, Sato AK, Abdiche YN. Rapid exploration of the epitope coverage produced by an Ebola survivor to guide the discovery of therapeutic antibody cocktails. Antib Ther 2020; 3:167-178. [PMID: 33912793 PMCID: PMC7454256 DOI: 10.1093/abt/tbaa016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Background Development of successful neutralizing antibodies is dependent upon broad epitope coverage to increase the likelihood of achieving therapeutic function. Recent advances in synthetic biology have allowed us to conduct an epitope binning study on a large panel of antibodies identified to bind to Ebola virus glycoprotein with only published sequences. Methods and Results A rapid, first-pass epitope binning experiment revealed seven distinct epitope families that overlapped with known structural epitopes from the literature. A focused set of antibodies was selected from representative clones per bin to guide a second-pass binning that revealed previously unassigned epitopes, confirmed epitopes known to be associated with neutralizing antibodies, and demonstrated asymmetric blocking of EBOV GP from allosteric effectors reported from literature. Conclusions Critically, this workflow allows us to probe the epitope landscape of EBOV GP without any prior structural knowledge of the antigen or structural benchmark clones. Incorporating epitope binning on hundreds of antibodies during early stage antibody characterization ensures access to a library’s full epitope coverage, aids in the identification of high quality reagents within the library that recapitulate this diversity for use in other studies, and ultimately enables the rational development of therapeutic cocktails that take advantage of multiple mechanisms of action such as cooperative synergistic effects to enhance neutralization function and minimize the risk of mutagenic escape. The use of high-throughput epitope binning during new outbreaks such as the current COVID-19 pandemic is particularly useful in accelerating timelines due to the large amount of information gained in a single experiment.
Collapse
Affiliation(s)
- Tom Z Yuan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | | - Erica Keane
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | - Qiang Liu
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | - Fumiko Axelrod
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | | | | | | - Aaron K Sato
- Twist Biopharma, Twist Bioscience, South San Francisco, CA 94080, USA
| | | |
Collapse
|
19
|
Knowling S, Clark J, Sjuts H, Abdiche YN. Direct Comparison of Label-Free Biosensor Binding Kinetics Obtained on the Biacore 8K and the Carterra LSA. SLAS DISCOVERY 2020; 25:977-984. [PMID: 32646263 DOI: 10.1177/2472555220934814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Funding pressure on the pharmaceutical industry to deliver new medicines to the market under aggressive timelines has led to a demand for analytical tools with higher detection sensitivity, increased throughput, and automation to speed up research and discovery efforts and converge upon clinically fit leads faster. In the quest for therapeutic antibodies, the early adoption of interaction analysis platforms utilizing surface plasmon resonance (SPR) detection provides insightful molecular-level information about the binding properties of antibody libraries that are key to understanding an antibody's mechanism of action and can guide the library-to-leads triage. Here, we sought to compare the binding kinetics obtained on two state-of-the-art high-throughput SPR platforms in an independent study conducted by unrelated groups located on different continents. We show that when experiments were performed by skilled users adhering to SPR best practices and allowed freedom in their assay design, the two platforms yielded near-identical results, establishing them both as reliable tools in accelerating the characterization of antibody libraries in providing critical information needed to advance leads to the clinic.
Collapse
Affiliation(s)
| | | | - Hanno Sjuts
- Biologics Research, Sanofi-Aventis Deutschland GmbH, Frankfurt, Hessen, Germany
| | | |
Collapse
|
20
|
Lee SH, Lee HT, Lim H, Kim Y, Park UB, Heo YS. Crystal structure of PD-1 in complex with an antibody-drug tislelizumab used in tumor immune checkpoint therapy. Biochem Biophys Res Commun 2020; 527:226-231. [DOI: 10.1016/j.bbrc.2020.04.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023]
|