1
|
Gianferante DM, Moore A, Spector LG, Wheeler W, Yang T, Hubbard A, Gorlick R, Patiño-Garcia A, Lecanda F, Flanagan AM, Amary F, Andrulis IL, Wunder JS, Thomas DM, Ballinger ML, Serra M, Hattinger C, Demerath E, Johnson W, Birmann BM, De Vivo I, Giles G, Teras LR, Arslan A, Vermeulen R, Sample J, Freedman ND, Huang WY, Chanock SJ, Savage SA, Berndt SI, Mirabello L. Genetically inferred birthweight, height, and puberty timing and risk of osteosarcoma. Cancer Epidemiol 2024; 92:102432. [PMID: 37596165 PMCID: PMC10869637 DOI: 10.1016/j.canep.2023.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Several studies have linked increased risk of osteosarcoma with tall stature, high birthweight, and early puberty, although evidence is inconsistent. We used genetic risk scores (GRS) based on established genetic loci for these traits and evaluated associations between genetically inferred birthweight, height, and puberty timing with osteosarcoma. METHODS Using genotype data from two genome-wide association studies, totaling 1039 cases and 2923 controls of European ancestry, association analyses were conducted using logistic regression for each study and meta-analyzed to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by case diagnosis age, metastasis status, tumor location, tumor histology, and presence of a known pathogenic variant in a cancer susceptibility gene. RESULTS Genetically inferred higher birthweight was associated with an increased risk of osteosarcoma (OR =1.59, 95% CI 1.07-2.38, P = 0.02). This association was strongest in cases without metastatic disease (OR =2.46, 95% CI 1.44-4.19, P = 9.5 ×10-04). Although there was no overall association between osteosarcoma and genetically inferred taller stature (OR=1.06, 95% CI 0.96-1.17, P = 0.28), the GRS for taller stature was associated with an increased risk of osteosarcoma in 154 cases with a known pathogenic cancer susceptibility gene variant (OR=1.29, 95% CI 1.03-1.63, P = 0.03). There were no significant associations between the GRS for puberty timing and osteosarcoma. CONCLUSION A genetic propensity to higher birthweight was associated with increased osteosarcoma risk, suggesting that shared genetic factors or biological pathways that affect birthweight may contribute to osteosarcoma pathogenesis.
Collapse
Affiliation(s)
| | - Amy Moore
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Logan G Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Tianzhong Yang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Aubrey Hubbard
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Richard Gorlick
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Patiño-Garcia
- Department of Pediatrics and Solid Tumor Division CIMA, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Center for Applied Medical Research (CIMA)-University of Navarra, IdiSNA, and CIBERONC, Pamplona, Spain
| | - Adrienne M Flanagan
- UCL Cancer Institute, Huntley Street, London WC1E 6BT, UK; Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Fernanda Amary
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Irene L Andrulis
- Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jay S Wunder
- Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David M Thomas
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mandy L Ballinger
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Claudia Hattinger
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Ellen Demerath
- Division of Epidemiology and Clinical Research, School of Public Health, UMN, USA
| | - Will Johnson
- School of Sport, Exercise, and Health Sciences, University of Loughborough, UK
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Graham Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Alan Arslan
- Department of Obstetrics and Gynecology, New York School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeannette Sample
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA.
| |
Collapse
|
2
|
Canning J, Strawbridge RJ, Miedzybrodzka Z, Marioni RE, Melbye M, Porteous DJ, Hurles ME, Sattar N, Sudlow CLM, Collins R, Padmanabhan S, Pell JP. Methods applied to neonatal dried blood spot samples for secondary research purposes: a scoping review. Crit Rev Clin Lab Sci 2024:1-24. [PMID: 38855982 DOI: 10.1080/10408363.2024.2360996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
This scoping review aimed to synthesize the analytical techniques used and methodological limitations encountered when undertaking secondary research using residual neonatal dried blood spot (DBS) samples. Studies that used residual neonatal DBS samples for secondary research (i.e. research not related to newborn screening for inherited genetic and metabolic disorders) were identified from six electronic databases: Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Medline, PubMed and Scopus. Inclusion was restricted to studies published from 1973 and written in or translated into English that reported the storage, extraction and testing of neonatal DBS samples. Sixty-seven studies were eligible for inclusion. Included studies were predominantly methodological in nature and measured various analytes, including nucleic acids, proteins, metabolites, environmental pollutants, markers of prenatal substance use and medications. Neonatal DBS samples were stored over a range of temperatures (ambient temperature, cold storage or frozen) and durations (two weeks to 40.5 years), both of which impacted the recovery of some analytes, particularly amino acids, antibodies and environmental pollutants. The size of DBS sample used and potential contamination were also cited as methodological limitations. Residual neonatal DBS samples retained by newborn screening programs are a promising resource for secondary research purposes, with many studies reporting the successful measurement of analytes even from neonatal DBS samples stored for long periods of time in suboptimal temperatures and conditions.
Collapse
Affiliation(s)
- Jordan Canning
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, Ashgrove House, NHS Grampian, Aberdeen, UK
- Medical Genetics Group, School of Medicine, Medical Sciences, Nutrition and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Riccardo E Marioni
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mads Melbye
- Danish Cancer Institute, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Naveed Sattar
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Cathie L M Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Health Data Research UK, London, UK
| | - Rory Collins
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jill P Pell
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Ding Y, Owen M, Le J, Batalov S, Chau K, Kwon YH, Van Der Kraan L, Bezares-Orin Z, Zhu Z, Veeraraghavan N, Nahas S, Bainbridge M, Gleeson J, Baer RJ, Bandoli G, Chambers C, Kingsmore SF. Scalable, high quality, whole genome sequencing from archived, newborn, dried blood spots. NPJ Genom Med 2023; 8:5. [PMID: 36788231 PMCID: PMC9929090 DOI: 10.1038/s41525-023-00349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Universal newborn screening (NBS) is a highly successful public health intervention. Archived dried bloodspots (DBS) collected for NBS represent a rich resource for population genomic studies. To fully harness this resource in such studies, DBS must yield high-quality genomic DNA (gDNA) for whole genome sequencing (WGS). In this pilot study, we hypothesized that gDNA of sufficient quality and quantity for WGS could be extracted from archived DBS up to 20 years old without PCR (Polymerase Chain Reaction) amplification. We describe simple methods for gDNA extraction and WGS library preparation from several types of DBS. We tested these methods in DBS from 25 individuals who had previously undergone diagnostic, clinical WGS and 29 randomly selected DBS cards collected for NBS from the California State Biobank. While gDNA from DBS had significantly less yield than from EDTA blood from the same individuals, it was of sufficient quality and quantity for WGS without PCR. All samples DBS yielded WGS that met quality control metrics for high-confidence variant calling. Twenty-eight variants of various types that had been reported clinically in 19 samples were recapitulated in WGS from DBS. There were no significant effects of age or paper type on WGS quality. Archived DBS appear to be a suitable sample type for WGS in population genomic studies.
Collapse
Affiliation(s)
- Yan Ding
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Mallory Owen
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
| | - Jennie Le
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Sergey Batalov
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Kevin Chau
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Yong Hyun Kwon
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Lucita Van Der Kraan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Zaira Bezares-Orin
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Zhanyang Zhu
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Narayanan Veeraraghavan
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Shareef Nahas
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Matthew Bainbridge
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Joe Gleeson
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Rebecca J. Baer
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA ,grid.266102.10000 0001 2297 6811California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA USA
| | - Gretchen Bandoli
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Christina Chambers
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California San Diego, La Jolla, CA 92093 USA
| | - Stephen F. Kingsmore
- grid.286440.c0000 0004 0383 2910Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123 USA ,grid.419735.d0000 0004 0615 8415Keck Graduate Institute, Claremont, CA 91711 USA
| |
Collapse
|
4
|
Lynton‐Jenkins JG, Chaine AS, Russell AF, Bonneaud C. Parasite detection and quantification in avian blood is dependent on storage medium and duration. Ecol Evol 2023; 13:e9819. [PMID: 36789332 PMCID: PMC9911630 DOI: 10.1002/ece3.9819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Studies of parasites in wild animal populations often rely on molecular methods to both detect and quantify infections. However, method accuracy is likely to be influenced by the sampling approach taken prior to nucleic acid extraction. Avian Haemosporidia are studied primarily through the screening of host blood, and a range of storage mediums are available for the short- to long-term preservation of samples. Previous research has suggested that storage medium choice may impact the accuracy of PCR-based parasite detection, however, this relationship has never been explicitly tested and may be exacerbated by the duration of sample storage. These considerations could also be especially critical for sensitive molecular methods used to quantify infection (qPCR). To test the effect of storage medium and duration on Plasmodium detection and quantification, we split blood samples collected from wild birds across three medium types (filter paper, Queen's lysis buffer, and 96% ethanol) and carried out DNA extractions at five time points (1, 6, 12, 24, and 36 months post-sampling). First, we found variation in DNA yield obtained from blood samples dependent on their storage medium which had subsequent negative impacts on both detection and estimates of Plasmodium copy number. Second, we found that detection accuracy (incidence of true positives) was highest for filter-paper-stored samples (97%), while accuracy for ethanol and Queen's lysis buffer-stored samples was influenced by either storage duration or extraction yield, respectively. Lastly, longer storage durations were associated with decreased copy number estimates across all storage mediums; equating to a 58% reduction between the first- and third-year post-sampling for lysis-stored samples. These results raise questions regarding the utility of standardizing samples by dilution, while also illustrating the critical importance of considering storage approaches in studies of Haemosporidia comparing samples subjected to different storage regimes and/or stored for varying lengths of time.
Collapse
Affiliation(s)
| | - Alexis S. Chaine
- Station for Theoretical and Experimental EcologyCNRSMoulisFrance
- Institute for Advanced Studies in ToulouseToulouseFrance
| | - Andrew F. Russell
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Station for Theoretical and Experimental EcologyCNRSMoulisFrance
| | - Camille Bonneaud
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Station for Theoretical and Experimental EcologyCNRSMoulisFrance
| |
Collapse
|
5
|
McClendon-Weary B, Putnick DL, Robinson S, Yeung E. Little to Give, Much to Gain-What Can You Do With a Dried Blood Spot? Curr Environ Health Rep 2021; 7:211-221. [PMID: 32851603 DOI: 10.1007/s40572-020-00289-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Technological advances have allowed dried blood spots (DBS) to be utilized for various measurements, helpful in population-based studies. The following is a review of the literature highlighting the advantages and disadvantages of DBS and describing their use in multiple areas of research. RECENT FINDINGS DBS can track pollutant exposure to understand their impact on health. DBS can also be used for (epi-)genetic studies, to measure clinical biomarkers, and to monitor drug adherence. Advantages of DBS include being minimally invasive, requiring low blood volume, and being cost-effective to collect, transport, and store. Disadvantages of DBS include the hematocrit effect, which is related to the viscosity of the blood affecting its spread on to the filter paper, causing a major source of error when assessing concentrations, and the possibility of low DNA volume. Numerous uses for DBS make them an important source of biomaterial but they require additional validation for accuracy and reproducibility.
Collapse
Affiliation(s)
- Bryttany McClendon-Weary
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Diane L Putnick
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Sonia Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Edwina Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA.
| |
Collapse
|