1
|
Chen X, Zhang X, Yu H, Han M, Sun J, Liu G, Ji Y, Zhai C, Zhu L, Shao H, Liang Y, McMinn A, Wang M. Spatio-temporal variation of bacterial community structure in two intertidal sediment types of Jiaozhou Bay. ENVIRONMENTAL RESEARCH 2023; 237:116743. [PMID: 37500038 DOI: 10.1016/j.envres.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The intertidal sediment environment is dynamic and the biofilm bacterial community within it must constantly adapt, but an understanding of the differences in the biofilm bacterial community within sediments of different types is still relatively limited. The semi-enclosed Jiaozhou Bay has a temperate monsoon climate, with strong currents at the mouth of the bay. In this study, the structure of the bacterial community in Jiaozhou Bay sediment biofilms are described using high-throughput 16 S rRNA gene sequencing and the effects of temporal change and different sediment environment types are discussed. Alpha diversity was significantly higher in sandy samples than in muddy samples. Sandy sediments with increased heterogeneity promote bacterial aggregation. Beta diversity analysis showed significant differences between sediment types and between stations. Proteobacteria and Acidobacteria were significantly more abundant at ZQ, while Campilobacterota was significantly more abundant at LC. The relative abundances of Bacteroidetes, Campilobacterota, Firmicutes, and Chloroflexi were significantly higher in the muddy samples, while Actinobacteria and Proteobacteria were higher in the sandy samples. There were different phylum-level biomarkers between sediment types at different stations. There were also different patterns of functional enrichment in biogeochemical cycles between sediment types and stations with the former having more gene families that differed significantly, highlighting their greater role in determining bacterial function. Bacterial amplicon sequence variant variation between months was less than KEGG ortholog variation between months, presumably the temporal change had an impact on shaping the intertidal sediment bacterial community, although this was less clear at the gene family level. Random forest prediction yielded a combination of 43 family-level features that responded well to temporal change, reflecting the influence of temporal change on sediment biofilm bacteria.
Collapse
Affiliation(s)
- Xuechao Chen
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Meiaoxue Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Jianhua Sun
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Gang Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Yan Ji
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China
| | - Chuan Zhai
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Liyan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia.
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China; Haide College, Ocean University of China, Qingdao, 266003, China; The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
2
|
Brandão J, Valério E, Weiskerger C, Veríssimo C, Sarioglou K, Novak Babič M, Solo-Gabriele HM, Sabino R, Rebelo MT. Strategies for Monitoring Microbial Life in Beach Sand for Protection of Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095710. [PMID: 37174228 PMCID: PMC10178049 DOI: 10.3390/ijerph20095710] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The 2021 revised guidelines of the World Health Organization recommend monitoring the quality of sand in addition to water at recreational beaches. This review provides background information about the types of beaches, the characteristics of sand, and the microbiological parameters that should be measured. Analytical approaches are described for quantifying fungi and fecal indicator bacteria from beach sand. The review addresses strategies to assess beach sand quality, monitoring approaches, sand remediation, and the proposed way forward for beach sand monitoring programs. In the proposed way forward, recommendations are provided for acceptable levels of fungi given their distribution in the environment. Additional recommendations include evaluating FIB distributions at beaches globally to assess acceptable ranges of FIB levels, similar to those proposed for fungi.
Collapse
Affiliation(s)
- João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct. Room A127, East Lansing, MI 48824, USA
| | - Cristina Veríssimo
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Konstantina Sarioglou
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Raquel Sabino
- Department of Transmittable Diseases, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Maria Teresa Rebelo
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Insights into Bacterial Communities and Diversity of Mangrove Forest Soils along the Upper Gulf of Thailand in Response to Environmental Factors. BIOLOGY 2022; 11:biology11121787. [PMID: 36552296 PMCID: PMC9775068 DOI: 10.3390/biology11121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
The comprehensive data for the dynamic adaptation of bacterial community structure in response to environmental factors is important for the maintenance of the mangrove ecosystem. This aspect was investigated with soils and surface water from six mangrove forests in six provinces along the Upper Gulf of Thailand shoreline. Mangrove soils were variable with respect to pH (acidic to slightly alkaline) and had low amounts of organic matter (OM). Illumina next-generation sequencing attested that the number of observed species as well as the bacterial diversity and richness among all sites were not significantly different. The gamma-, alpha-Proteobacteria, Desulfobacteria, Bacteroidia, Anaerolineae, Bathyarchaeia, Acidobacteriae, Nitrososphaeria, Clostridia, and Thermoplasmata were more abundant bacterial classes present in all sites. Soil OM was the major factor that mostly modulated the bacterial community structure, while salinity influenced the number of observed species and bacterial richness. These results provide informative data on the bacterial community, in response to both environmental factors and heavy metal pollutants, that is prominent for sustainable development and management of mangrove forests.
Collapse
|
4
|
Vipindas PV, Jabir T, Rahiman KMM, Rehitha TV, Sudheesh V, Jesmi Y, Hatha AAM. Impact of anthropogenic organic matter on bacterial community distribution in the continental shelf sediments of southeastern Arabian Sea. MARINE POLLUTION BULLETIN 2022; 174:113227. [PMID: 34883441 DOI: 10.1016/j.marpolbul.2021.113227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to understand the influence of anthropogenic organic matter on the spatial distribution microbial community in the continental shelf sediments of the Southeastern Arabian Sea (SEAS). The sediment samples were taken from the inner shelf (30 m depths) and outer shelf (100-200 m). The C:Nmolar ratio of the sediment displayed a significant variation between the inner and outer shelf and a higher terrestrial organic input in the inner shelf. Microbial community composition also showed a significant variation between the inner and outer shelf (p ≤ 0.05). Proteobacteria was the dominant phylum in the outer shelf sediments (42.5%), whereas Desulfobacterota (21.9%) was the dominant phylum in the inner shelf. Complex terrestrial organic matter degrading bacteria dominated the inner shelf, whereas oligophilic microbial community and autochthonous organic matter utilizing bacteria dominated the outer shelf. Thus the source of organic matter controlled the microbial distribution in the SEAS.
Collapse
Affiliation(s)
- P V Vipindas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| | - T Jabir
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - K M Mujeeb Rahiman
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - T V Rehitha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - V Sudheesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - Y Jesmi
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India
| | - A A Mohamed Hatha
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala 682016, India.
| |
Collapse
|