1
|
Sobol M, Błachnio A, Meisner M, Wdowiak A, Wdowiak N, Gorbaniuk O, Jankowski KS. Circadian rhythm and sleep disruptions in relation to prenatal stress and depression symptoms. Chronobiol Int 2024; 41:294-303. [PMID: 38297459 DOI: 10.1080/07420528.2024.2303985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Circadian rhythm and sleep are related to health, but there is little data on the relationship between the sleep/wake rhythm and mood at different stages of pregnancy. The aim of this prospective, longitudinal study was to investigate the associations of circadian rhythm and sleep disruptions with stress and depression among women in early and late pregnancy. The participants were 26 pregnant women. Objective and subjective estimations of circadian rhythm and sleep were administered, namely actigraphy and the Biological Rhythms Interview of Assessment in Neuropsychiatry in the form of a questionnaire. The Perceived Stress Scale and the Edinburgh Postnatal Depression Scale were also used. Subjectively perceived circadian rhythm disruptions were positively related to stress. Tendency to maintain a regular rhythm of sleep and activity in early pregnancy and subjectively perceived disruptions of circadian rhythms in late pregnancy were positively associated with prenatal depression in late pregnancy. Sleep fragmentation and long time spent in bed at night in early pregnancy were positively associated with stress and depression in late pregnancy. The results suggest the importance of flexibility and the ability to adapt one's circadian activities to the demands of the situation of pregnancy-related changes in lifestyle. They also indicate the significance of good-quality uninterrupted night sleep in early pregnancy.
Collapse
Affiliation(s)
| | - Agata Błachnio
- Department of Psychology, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Michał Meisner
- Department of Psychology, University of Warsaw, Warsaw, Poland
| | - Artur Wdowiak
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Natalia Wdowiak
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Oleg Gorbaniuk
- Institute of Psychology, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Psychology, Casimir Pulaski Radom University, Radom, Poland
| | | |
Collapse
|
2
|
Teeple K, Rajput P, Scinto S, Schoonmaker J, Davis C, Dinn M, McIntosh M, Krishnamurthy S, Plaut K, Casey T. Impact of high-fat diet and exposure to constant light on reproductive competence of female ICR mice. Biol Open 2023; 12:bio060088. [PMID: 37843404 PMCID: PMC10602010 DOI: 10.1242/bio.060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 10/17/2023] Open
Abstract
Obesity and exposure to light at night are prevalent in modern society and associated with changes in physiology and behavior that can affect a female's ability to support offspring growth during pregnancy and lactation. A 2X3 factor study of ICR mice was conducted to determine the effect of diet [control (CON; 10% fat) or high fat (HF; 60% fat)] and exposure to regular 12 h light:dark cycles (LD) or continuous low (L5) or high (L100) lux of light on gestation length, birth litter size, milk composition and litter growth to lactation day 12. HF diet reduced birth litter size, but increased postnatal d 12 litter weight (P<0.05), whereas constant light tended to increase litter weight (P=0.07). Continuous light increased gestation length, altered dam feed intake, increased serum prolactin and increased final dam and mammary gland weight (P<0.05), while decreasing mammary ATP content and milk lactose (P<0.05). Correlation analysis indicated a positive relationship between final litter weight and mammary size, metabolic stores (e.g. maternal fat pad weight), kcal of feed intake, and gestation length (P<0.05). Although CON mice spent more time eating than HF dams, the calorically dense HF diet was related to greater rates of litter growth to peak lactation. Constant light circadian disrupting effects appear to be confounded by a potential long day photoperiod response exemplified by higher circulating levels of prolactin and increased body and mammary weight of females exposed to these conditions. Other model systems may be better to study the interacting effects of obesity and circadian disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Prabha Rajput
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Michayla Dinn
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mackenzie McIntosh
- Histology Core, College of Veterinary Medicine, Purdue University West Lafayette, IN 47907, USA
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Teeple K, Rajput P, Gonzalez M, Han-Hallett Y, Fernández-Juricic E, Casey T. High fat diet induces obesity, alters eating pattern and disrupts corticosterone circadian rhythms in female ICR mice. PLoS One 2023; 18:e0279209. [PMID: 36662804 PMCID: PMC9858401 DOI: 10.1371/journal.pone.0279209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 01/21/2023] Open
Abstract
Circadian, metabolic, and reproductive systems are inter-regulated. Excessive fatness and circadian disruption alter normal physiology and the endocrine milieu, including cortisol, the primary stress hormone. Our aim was to determine the effect feeding a high fat diet to female ICR mice had on diurnal feeding pattern, weight gain, body composition, hair corticosterone levels and circadian patterns of fecal corticosterone. Prepubertal (~35d of age) ICR mice were assigned to control (CON; 10% fat) or high fat (HF; 60% fat) diet and fed for 4 wk to achieve obesity under 12h light and 12h of dark. Feed intake was measured twice daily to determine diurnal intake. Mice were weighed weekly. After 4 wk on diets hair was collected to measure corticosterone, crown-rump length was measured to calculate body mass index (BMI), and body composition was measured with EchoMRI to determine percent fat. HF mice weighed more (P<0.05) after week two, BMI and percent body fat was greater (P<0.05) in HF than CON at the end of wk 4. HF mice consumed more during the day (P<0.05) than CON mice after 1 week on diets. Hair corticosterone was higher in HF mice than in CON (P<0.05). Fecal circadian sampling over 48hr demonstrated that HF mice had elevated basal corticosterone, attenuated circadian rhythms, and a shift in amplitude. High fat feeding for diet induced obesity alters circadian eating pattern and corticosterone rhythms, indicating a need to consider the impact of circadian system disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Prabha Rajput
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Maria Gonzalez
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yu Han-Hallett
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
4
|
Suarez-Trujillo A, Hoang N, Robinson L, McCabe CJ, Conklin D, Minor RC, Townsend J, Plaut K, George UZ, Boerman J, Casey TM. Effect of circadian system disruption on the concentration and daily oscillations of cortisol, progesterone, melatonin, serotonin, growth hormone, and core body temperature in periparturient dairy cattle. J Dairy Sci 2022; 105:2651-2668. [PMID: 35033342 DOI: 10.3168/jds.2021-20691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
Metabolic, circadian, sleep, and reproductive systems are integrated and reciprocally regulated, but the understanding of the mechanism is limited. To study this integrated regulation, the circadian timing system was disrupted by exposing late pregnant nonlactating (dry) cows to chronic shifts in the light-dark phase, and rhythms of body temperature and circulating cortisol (CORT), progesterone (P4), serotonin (5HT), melatonin (MEL), and growth hormone (GH) concentrations were measured. Specifically, across 2 identical studies (1 and 2), at 35 d before expected calving (BEC) multiparous cows were assigned to control (CON; n = 24) and exposed to 16 h light and 8 h dark or phase shift (PS; n = 24) treatments and exposed to 6-h light-dark phase shifts every 3 d until parturition. All cows were exposed to control lighting after calving. Blood samples were collected in the first study at 0600 h on d 35 BEC, d 21 BEC, and 2 d before calving, and d 0, 2, 9, 15, and 22 postpartum (PP). A subset of cows (n = 6/group) in study 1 was blood sampled every 4 h over 48 h beginning on d 23 BEC, 9 BEC, and 5 PP. Body temperature was measured every 30 min (n = 8-16/treatment) for 48 h at 23 BEC and 9 BEC in both studies; and at 14 PP and 60 PP only in study 2. Treatment did not affect levels of CORT, GH, or P4 at 0600 h, but overall level of 5HT was lower and MEL higher in PS cows across days sampled. A 2-component versus single-component cosinor model better described [>coefficient of determination (R2); <Akaike information criterion and <Bayesian information criterion] daily oscillations of all hormones and temperature for both treatments. Circadian rhythm fit (R2) of body temperature and MEL increased from 23 BEC to 9 BEC in CON and was marked by loss of feeding time influence on oscillations in both treatments. Both treatments exhibited circadian rhythms of CORT at 9 BEC, CON cows also exhibited circadian rhythms in P4 at 23 BEC, and 5HT at 9 BEC. Daily oscillations in temperature and hormones, except CORT, were affected by PS treatment in the prepartum and were associated with longer gestation. In the PP, circadian rhythmicity was lost or diminished for all hormones and body temperature in both treatments. Stronger rhythms of body temperature and multiple hormones at 1 wk prepartum may indicate a synchronizing cue to time parturition. Therefore, dairy systems may need to consider management factors that affect circadian clocks in late-gestation cows.
Collapse
Affiliation(s)
| | - Nguyen Hoang
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182
| | - Leela Robinson
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Conor J McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Dawn Conklin
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro 27401
| | - Radiah C Minor
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro 27401
| | - Jonathan Townsend
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Theresa M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
5
|
O’Brien LM. Sleep in Pregnancy. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Li J, Somers VK, Lopez-Jimenez F, Di J, Covassin N. Demographic characteristics associated with circadian rest-activity rhythm patterns: a cross-sectional study. Int J Behav Nutr Phys Act 2021; 18:107. [PMID: 34407852 PMCID: PMC8371768 DOI: 10.1186/s12966-021-01174-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Rest-activity rhythm (RAR), a manifestation of circadian rhythms, has been associated with morbidity and mortality risk. However, RAR patterns in the general population and specifically the role of demographic characteristics in RAR pattern have not been comprehensively assessed. Therefore, we aimed to describe RAR patterns among non-institutionalized US adults and age, sex, and race/ethnicity variation using accelerometry data from a nationally representative population. METHODS This cross-sectional study was conducted using the US National Health and Nutrition Examination Survey (NHANES) 2011-2014. Participants aged ≥20 years who were enrolled in the physical activity monitoring examination and had at least four 24-h periods of valid wrist accelerometer data were included in the present analysis. 24-h RAR metrics were generated using both extended cosinor model (amplitude, mesor, acrophase and pseudo-F statistic) and nonparametric methods (interdaily stability [IS] and intradaily variability [IV]). Multivariable linear regression was used to assess the association between RAR and age, sex, and race/ethnicity. RESULTS Eight thousand two hundred participants (mean [SE] age, 49.1 [0.5] years) were included, of whom 52.2% were women and 67.3% Whites. Women had higher RAR amplitude and mesor, and also more robust (pseudo-F statistic), more stable (higher IS) and less fragmented (lower IV) RAR (all P trend < 0.001) than men. Compared with younger adults (20-39 years), older adults (≥ 60 years) exhibited reduced RAR amplitude and mesor, but more stable and less fragmented RAR, and also reached their peak activity earlier (advanced acrophase) (all P trend < 0.001). Relative to other racial/ethnic groups, Hispanics had the highest amplitude and mesor level, and most stable (highest IS) and least fragmented (lowest IV) RAR pattern (P trend < 0.001). Conversely, non-Hispanic blacks had the lowest peak activity level (lowest amplitude) and least stable (lowest IS) RAR pattern (all P trend < 0.001). CONCLUSIONS In the general adult population, RAR patterns vary significantly according to sex, age and race/ethnicity. These results may reflect demographic-dependent differences in intrinsic circadian rhythms and may have important implications for understanding racial, ethnic, sex and other disparities in morbidity and mortality risk.
Collapse
Affiliation(s)
- Jingen Li
- Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francisco Lopez-Jimenez
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Junrui Di
- Department of Biostatistics, Johns Hopkins University, Baltimore, MA, 21205, USA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|