1
|
Balint B, Bhatia KP. Small Molecule, Big Hope-Can Acetyl-DL-Leucine Reverse Parkinson's Disease? Mov Disord Clin Pract 2024. [PMID: 39728192 DOI: 10.1002/mdc3.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Bettina Balint
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology London, London, United Kingdom
| |
Collapse
|
2
|
Mehri A, Toosi MB, Tavasoli AR, Saberi-Karimian M. The Latest Developments for the Treatment of Ataxia Telangiectasia: A Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2607-2615. [PMID: 39327359 DOI: 10.1007/s12311-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Ataxia telangiectasia (AT), Louis-Bar syndrome, is a rare neurodegenerative disorder caused by autosomal recessive biallelic mutations within the ataxia telangiectasia mutated (ATM) gene. Currently, there are no curative therapies available for this disorder. This review provides an overview of the latest advances in treatment methods including 1- Acetyl-DL-leucine, 2- Bone Marrow Transplantation, 3- Gene Therapy, 4- Dexamethasone, and finally 5- Red Blood Cells (RBCs) as a carrier for dexamethasone (encapsulation of dexamethasone sodium phosphate into autologous erythrocytes, known as EryDex). Most of the treatments under investigation are in the early stages, except for the EryDex System. It appears that the EryDex system and N-Acetyl-DL-Leucine may hold promise as potential treatment options.
Collapse
Affiliation(s)
- Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Oertel WH, Janzen A, Henrich MT, Geibl FF, Sittig E, Meles SK, Carli G, Leenders K, Booij J, Surmeier DJ, Timmermann L, Strupp M. Acetyl-DL-leucine in two individuals with REM sleep behavior disorder improves symptoms, reverses loss of striatal dopamine-transporter binding and stabilizes pathological metabolic brain pattern-case reports. Nat Commun 2024; 15:7619. [PMID: 39223119 PMCID: PMC11369233 DOI: 10.1038/s41467-024-51502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isolated REM Sleep Behavior Disorder (iRBD) is considered a prodrome of Parkinson's disease (PD). We investigate whether the potentially disease-modifying compound acetyl-DL-leucine (ADLL; 5 g/d) has an effect on prodromal PD progression in 2 iRBD-patients. Outcome parameters are RBD-severity sum-score (RBD-SS-3), dopamine-transporter single-photon emission computerized tomography (DAT-SPECT) and metabolic "Parkinson-Disease-related-Pattern (PDRP)"-z-score in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). After 3 weeks ADLL-treatment, the RBD-SS-3 drops markedly in both patients and remains reduced for >18 months of ADLL-treatment. In patient 1 (female), the DAT-SPECT putaminal binding ratio (PBR) decreases in the 5 years pretreatment from normal (1.88) to pathological (1.22) and the patient's FDG-PET-PDRP-z-score rises from 1.72 to 3.28 (pathological). After 22 months of ADLL-treatment, the DAT-SPECT-PBR increases to 1.67 and the FDG-PET-PDRP-z-score stabilizes at 3.18. Similar results are seen in patient 2 (male): his DAT-SPECT-PBR rises from a pretreatment value of 1.42 to 1.72 (close to normal) and the FDG-PET-PDRP-z-score decreases from 1.02 to 0.30 after 18 months of ADLL-treatment. These results support exploration of whether ADLL may have disease-modifying properties in prodromal PD.
Collapse
Affiliation(s)
- Wolfgang H Oertel
- Department of Neurology, Philipps University of Marburg, Marburg, Germany.
- Institute of Neurogenomics, Helmholtz Center for Medicine and Environment, Munich, Germany.
| | - Annette Janzen
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Martin T Henrich
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fanni F Geibl
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elisabeth Sittig
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Sanne K Meles
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lars Timmermann
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Michael Strupp
- Department of Neurology, LMU University Hospital, LMU, Munich, Germany.
| |
Collapse
|
4
|
Beyraghi-Tousi M, Sahebkar A, Houra M, Sarvghadi P, Jamialahmadi T, Bagheri R, Tavallaie S, Gumpricht E, Saberi-Karimian M. Efficacy and safety of N-acetyl-L-leucine in patients with ataxia telangiectasia: A randomized, double-blind, placebo-controlled, crossover clinical trial. Eur J Paediatr Neurol 2024; 50:57-63. [PMID: 38669738 DOI: 10.1016/j.ejpn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/19/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is an autosomal recessive multisystem disorder. Most patients have progressive cerebellar ataxia, oculocutaneous telangiectasia, frequent pulmonary infection, and an increased risk of malignancies. Although N-acetyl-dl-leucine (ADLL) has shown some efficacy in patients with AT, its more pharmacologically active enantiomer, N-acetyl-l-leucine (NALL), has just recently been investigated in ataxic individuals. The current study assessed the efficacy of NALL in patients with AT. METHODS This 2 × 2 crossover, double-blind, randomized clinical trial was conducted on 20 patients with AT. After excluding four patients, 16 subjects (eight females, eight males; mean age 9.8 ± 3.5 years) with a definitive genetic diagnosis of AT were randomly assigned to one of two study groups, with one group receiving 1-4 g/day NALL or a placebo for six weeks. Subjects then had a 4-week washout before crossing over to the other treatment for an additional six weeks. The Spinocerebellar Ataxia Functional Index (SCAFI) and the Scale for Assessment and Rating of Ataxia (SARA) score assessed patients' motor function. Quality of life (QOL) was evaluated by a specialist using the PedsQL questionnaire. Fasting blood samples were taken from all subjects before and after each intervention to determine potential side effects. RESULTS Although patients' nausea and constipation were improved, the results failed to reveal any significant benefits of NALL treatment on ataxia symptoms. NALL treatment had no significant effects on SARA, SCAFI-9HPT (9-hole peg test) nondominant, SCAFI-9HPT dominant, or SCAFI-8WMT (8 m walking time) (p > 0.05). Our patient's Physical Health score in Child self-report and Parent proxy-report did not significantly change in the treatment group compared to the placebo (p > 0.05). Furthermore, there were no significant changes in energy and macronutrient intake after NALL treatment. None of the volunteers reported serious or moderate side effects. CONCLUSIONS To the best of our knowledge, this was the first placebo-controlled, randomized clinical trial exploring NALL's potential effects for treating AT. Despite improvements in some symptomss, NALL intervention failed to improve motor function significantly. However, patients' nausea and constipation were improved by NALL, which can be a relevant benefit clinically.
Collapse
Affiliation(s)
- Mehran Beyraghi-Tousi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Houra
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bagheri
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maryam Saberi-Karimian
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
de Sousa FA, Alves CS, Pinto AN, Meireles L, Rego ÂR. Pharmacological Treatment of Acute Unilateral Vestibulopathy: A Review. J Audiol Otol 2024; 28:18-28. [PMID: 37953517 PMCID: PMC10808386 DOI: 10.7874/jao.2023.00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 11/14/2023] Open
Abstract
There have been few investigations on the epidemiology, etiology, and medical management of acute unilateral vestibulopathy (AUV). Short-term pharmaceutical resolutions include vestibular symptomatic suppressants, anti-emetics, and some cause-based therapies. Anticholinergics, phenothiazines, antihistamines, antidopaminergics, benzodiazepines, and calcium channel antagonists are examples of vestibular suppressants. Some of these medications may show their effects through multiple mechanisms. In contrast, N-acetyl-L-leucine, Ginkgo biloba, and betahistine improve central vestibular compensation. Currently, AUV pathophysiology is poorly understood. Diverse hypotheses have previously been identified which have brought about some causal treatments presently used. According to some publications, acute administration of anti-inflammatory medications may have a deleterious impact on both post-lesional functional recovery and endogenous adaptive plasticity processes. Thus, some authors do not recommend the use of corticosteroids in AUV. Antivirals are even more contentious in the context of AUV treatment. Although vascular theories have been presented, no verified investigations employing anti-clotting or vasodilator medications have been conducted. There are no standardized treatment protocols for AUV to date, and the pharmacological treatment of AUV is still questionable. This review addresses the most current developments and controversies in AUV medical treatment.
Collapse
Affiliation(s)
- Francisco Alves de Sousa
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clara Serdoura Alves
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Nóbrega Pinto
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Meireles
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ângela Reis Rego
- Otorhinolaryngology and Head & Neck Surgery Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
6
|
Saberi-Karimian M, Houra M, Jamialahmadi T, Sarvghadi P, Nikbaf M, Akhlaghi S, Sahebkar A. The Effects of N-Acetyl-L-Leucine on the Improvement of Symptoms in a Patient with Multiple Sulfatase Deficiency. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1250-1256. [PMID: 36482027 PMCID: PMC9735006 DOI: 10.1007/s12311-022-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Multiple Sulfatase Deficiency (MSD) is a rare autosomal recessive disease with specific clinical findings such as psychomotor retardation and neurological deterioration. No therapy is available for this genetic disorder. Previous studies have shown that N-acetyl-L-leucine (NALL) can improve the neurological inflammation in the cerebellum.In the current study, the effects of NALL on ataxia symptoms and quality of life were explored in a patient with MSD.This study was a crossover case study. The subject, a girl aged 12 years old, received NALL at a dose of 3 g/day (1 g in the morning, 1 g in the afternoon, and 1 g in the evening). A fasting blood sample was taken from the subject to evaluate side effects before the intervention and 4 weeks after taking supplement/placebo in every study stage. The ataxia moving symptoms were evaluated using the Scale for the Assessment and Rating of Ataxia (SARA) score in every study stage. Dietary intake was measured using 24-h dietary recall before and after the intervention. The diet compositions were assessed by Nutritionist IV software. Serum IL-6 level was measured using an ELISA kit.There was no significant change in complete blood count (CBC) and serum biochemical factors in the patient with MSD after receiving NALL (3 g/day) over 4 weeks. The SARA score was reduced by 25%. The gait whose maximum score accounts for approximately one-fifth of the maximum total SARA score (8/40) was decreased. The heel-to-shin slide, the only SARA item performed without visual control, was also improved after therapy. Furthermore, there was a downward trend in the 8MWT (8.71 to 7.93 s). Regarding quality of life assessments, the parent and child reported improved quality of life index, physical health, and emotional function after taking NALL. Moreover, total energy intake was increased with NALL treatment through the study period.Supplementation with NALL at a dose of 3 g/day over 4 weeks was well tolerated and improved ataxia symptoms, quality of life measure, and serum IL-6 levels in the patient with MSD. Further proof-of-concept trials are warranted to confirm the present findings.
Collapse
Affiliation(s)
- Maryam Saberi-Karimian
- International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Houra
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahlagha Nikbaf
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Akhlaghi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, WA, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Bremova-Ertl T, Hofmann J, Stucki J, Vossenkaul A, Gautschi M. Inborn Errors of Metabolism with Ataxia: Current and Future Treatment Options. Cells 2023; 12:2314. [PMID: 37759536 PMCID: PMC10527548 DOI: 10.3390/cells12182314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A number of hereditary ataxias are caused by inborn errors of metabolism (IEM), most of which are highly heterogeneous in their clinical presentation. Prompt diagnosis is important because disease-specific therapies may be available. In this review, we offer a comprehensive overview of metabolic ataxias summarized by disease, highlighting novel clinical trials and emerging therapies with a particular emphasis on first-in-human gene therapies. We present disease-specific treatments if they exist and review the current evidence for symptomatic treatments of these highly heterogeneous diseases (where cerebellar ataxia is part of their phenotype) that aim to improve the disease burden and enhance quality of life. In general, a multimodal and holistic approach to the treatment of cerebellar ataxia, irrespective of etiology, is necessary to offer the best medical care. Physical therapy and speech and occupational therapy are obligatory. Genetic counseling is essential for making informed decisions about family planning.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland
| | - Jan Hofmann
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Janine Stucki
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, 3010 Bern, Switzerland; (J.H.); (J.S.)
| | - Anja Vossenkaul
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.V.); (M.G.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
Fields T, M Bremova T, Billington I, Churchill GC, Evans W, Fields C, Galione A, Kay R, Mathieson T, Martakis K, Patterson M, Platt F, Factor M, Strupp M. N-acetyl-L-leucine for Niemann-Pick type C: a multinational double-blind randomized placebo-controlled crossover study. Trials 2023; 24:361. [PMID: 37248494 DOI: 10.1186/s13063-023-07399-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a rare autosomal recessive neurodegenerative lysosomal disease characterized by multiple symptoms such as progressive cerebellar ataxia and cognitive decline. The modified amino acid N-acetyl-leucine has been associated with positive symptomatic and neuroprotective, disease-modifying effects in various studies, including animal models of NPC, observational clinical case studies, and a multinational, rater-blinded phase IIb clinical trial. Here, we describe the development of a study protocol (Sponsor Code "IB1001-301") for the chronic treatment of symptoms in adult and pediatric patients with NPC. METHODS This multinational double-blind randomized placebo-controlled crossover phase III study will enroll patients with a genetically confirmed diagnosis of NPC patients aged 4 years and older across 16 trial sites. Patients are assessed during a baseline period and then randomized (1:1) to one of two treatment sequences: IB1001 followed by placebo or vice versa. Each sequence consists of a 12-week treatment period. The primary efficacy endpoint is based on the Scale for the Assessment and Rating of Ataxia, and secondary outcomes include cerebellar functional rating scales, clinical global impression, and quality of life assessments. DISCUSSION Pre-clinical as well as observational and phase IIb clinical trials have previously demonstrated that IB1001 rapidly improved symptoms, functioning, and quality of life for pediatric and adult NPC patients and is safe and well tolerated. In this placebo-controlled cross-over trial, the risk/benefit profile of IB1001 for NPC will be evaluated. It will also give information about the applicability of IB1001 as a therapeutic paradigm for other rare and common neurological disorders. TRIAL REGISTRATIONS The trial (IB1001-301) has been registered at www. CLINICALTRIALS gov (NCT05163288) and www.clinicaltrialsregister.eu (EudraCT: 2021-005356-10). Registered on 20 December 2021.
Collapse
Affiliation(s)
- T Fields
- IntraBio Ltd, Begbroke Science Park, Begroke Hill, Woodstock Road, Oxford, OX5 1PF, UK.
| | - T M Bremova
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - I Billington
- IntraBio Ltd, Begbroke Science Park, Begroke Hill, Woodstock Road, Oxford, OX5 1PF, UK
| | - G C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - W Evans
- Niemann-Pick UK, Suite 2, Vermont House, Concord, Tyne and Wear, Washington, NE37 2SQ, UK
- Primary Care Stratified Medicine (PRISM), Division of Primary Care, University of Nottingham, Nottingham, UK
| | - C Fields
- IntraBio Ltd, Begbroke Science Park, Begroke Hill, Woodstock Road, Oxford, OX5 1PF, UK
| | - A Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - R Kay
- RK Statistics, Brook House, Mesne Lane, Bakewell, DE45 1AL, UK
| | - T Mathieson
- Niemann-Pick UK, Suite 2, Vermont House, Concord, Tyne and Wear, Washington, NE37 2SQ, UK
- RK Statistics, Brook House, Mesne Lane, Bakewell, DE45 1AL, UK
| | - K Martakis
- Department of Pediatric Neurology, University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany
| | - M Patterson
- Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - F Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - M Factor
- IntraBio Ltd, Begbroke Science Park, Begroke Hill, Woodstock Road, Oxford, OX5 1PF, UK
| | - M Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Bremova-Ertl T, Schneider S. Current advancements in therapy for Niemann-Pick disease: progress and pitfalls. Expert Opin Pharmacother 2023; 24:1229-1247. [PMID: 37211769 DOI: 10.1080/14656566.2023.2215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disorder. To combat the progressive neurodegeneration in NPC, disease-modifying treatment needs to be introduced early in the course of the disease. The only approved, disease-modifying treatment is a substrate-reduction treatment, miglustat. Given miglustat's limited efficacy, new compounds are under development, including gene therapy; however, many are still far from clinical use. Moreover, the phenotypic heterogeneity and variable course of the disease can impede the development and approval of new agents. AREAS COVERED Here, we offer an expert review of these therapeutic candidates, with a broad scope not only on the main pharmacotherapies, but also on experimental approaches, gene therapies, and symptomatic strategies. The National Institute of Health (NIH) database PubMed has been searched for the combination of the words 'Niemann-Pick type C'+ 'treatment' or 'therapy' or 'trial.' The website clinicaltrials.gov has also been consulted. EXPERT OPINION We conclude a combination of treatment strategies should be sought, with a holistic approach, to improve the quality of life of affected individuals and their families.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
| | - Susanne Schneider
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
10
|
Li J, Zhou X, Takashi M, Todoroki K, Toyo'oka T, Shi Q, Jin T, Zhe Min J. Development of a novel method for analysing N-acetyl-DL-leucine enantiomers in human fingernail by UPLC-ESI-MS/MS and the evaluation in diabetes mellitus. Clin Chim Acta 2023; 545:117367. [PMID: 37121561 DOI: 10.1016/j.cca.2023.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Recent research has been reported that N-acetyl-leucine content is significantly reduced in the saliva of diabetic patients, but no reports of detection in human nails have been found. This study aims to develop a novel method for the chiral separation of N-acetyl-DL-leucine (Ac-DL-Leu) in human fingernails to investigate the differences between healthy volunteers (HVs), prediabetes (PDs) and diabetic patients (DPs), and to verify its effectiveness in early warning of diabetes. METHOD Chiral resolution was performed using DBD-Apy pre-column derivatization on a C18 column (2.1 × 150 mm, 1.9 μm) at 40 oC, and detected by UPLC-ESI-MS/MS. RESULTS The resolution and the limit of detection (LOD) of Ac-DL-Leu were 1.75 and 1.50 fmol, respectively. The linear range of Ac-DL-Leu was 10-2000 fmol and the determination coefficient (R2) was above 0.9997. The recovery of Ac-DL-Leu in human nails was 96.92-105.69%. The contents of Ac-D-Leu and Ac-L-Leu were analyzed in 18 HVs, 13 PDs and 16 DPs fingernails. The results showed that their contents were significantly lower in DPs than in PDs and HVs (p < 0.0001). CONCLUSIONS A method for evaluating the effectiveness of Ac-DL-Leu enantiomers in human fingernails as a biomarker for diabetes was firstly developed.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of General Surgery and Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China
| | - Xin Zhou
- Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of General Surgery and Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China; Yanbian Institute for Food and Drug Control, Yanji, 133002, Jilin, Province, China
| | - Morotomi Takashi
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Qing Shi
- Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of General Surgery and Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China.
| | - Toufeng Jin
- Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of General Surgery and Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China.
| | - Jun Zhe Min
- Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Department of General Surgery and Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China.
| |
Collapse
|
11
|
Martakis K, Claassen J, Gascon-Bayari J, Goldschagg N, Hahn A, Hassan A, Hennig A, Jones S, Kay R, Lau H, Perlman S, Sharma R, Schneider S, Bremova-Ertl T. Efficacy and Safety of N-Acetyl-l-Leucine in Children and Adults With GM2 Gangliosidoses. Neurology 2023; 100:e1072-e1083. [PMID: 36456200 PMCID: PMC9990862 DOI: 10.1212/wnl.0000000000201660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND OBJECTIVES GM2 gangliosidoses (Tay-Sachs and Sandhoff diseases) are rare, autosomal recessive, neurodegenerative diseases with no available symptomatic or disease-modifying treatments. This clinical trial investigated N-acetyl-l-leucine (NALL), an orally administered, modified amino acid in pediatric (≥6 years) and adult patients with GM2 gangliosidoses. METHODS In this phase IIb, multinational, open-label, rater-blinded study (IB1001-202), male and female patients aged ≥6 years with a genetically confirmed diagnosis of GM2 gangliosidoses received orally administered NALL for a 6-week treatment period (4 g/d in patients ≥13 years, weight-tiered doses for patients 6-12 years), followed by a 6-week posttreatment washout period. For the primary Clinical Impression of Change in Severity analysis, patient performance on a predetermined primary anchor test (the 8-Meter Walk Test or the 9-Hole Peg Test) at baseline, after 6 weeks on NALL, and again after a 6-week washout period was videoed and evaluated centrally by blinded raters. Secondary outcomes included assessments of ataxia, clinical global impression, and quality of life. RESULTS Thirty patients between the age of 6 and 55 years were enrolled. Twenty-nine had an on-treatment assessment and were included in the primary modified intention-to-treat analysis. The study met its CI-CS primary end point (mean difference 0.71, SD = 2.09, 90% CI 0.00, 1.50, p = 0.039), as well as secondary measures of ataxia and global impression. NALL was safe and well tolerated, with no serious adverse reactions. DISCUSSION Treatment with NALL was associated with statistically significant and clinically relevant changes in functioning and quality of life in patients with GM2 gangliosidosis. NALL was safe and well tolerated, contributing to an overall favorable risk:benefit profile. NALL is a promising, easily administered (oral) therapeutic option for these rare, debilitating diseases with immense unmet medical needs. TRIAL REGISTRATION INFORMATION The trial is registered with ClinicalTrials.gov (NCT03759665; registered on November 30, 2018), EudraCT (2018-004406-25), and DRKS (DRKS00017539). The first patient was enrolled on June 7, 2019. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that NALL improves outcomes for patients with GM2 gangliosidoses.
Collapse
Affiliation(s)
- Kyriakos Martakis
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland.
| | - Jens Claassen
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Jordi Gascon-Bayari
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Nicolina Goldschagg
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Andreas Hahn
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Anhar Hassan
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Anita Hennig
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Simon Jones
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Richard Kay
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Heather Lau
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Susan Perlman
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Reena Sharma
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Susanne Schneider
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| | - Tatiana Bremova-Ertl
- From the Department of Pediatric Neurology (K.M., Andreas Hahn), University Children's Hospital (UKGM) and Medical Faculty, Justus Liebig University of Giessen, Giessen, Germany; Department of Pediatrics (K.M.), Medical Faculty and University Hospital, University of Cologne, Cologne, Germa; Department of Neurology (J.C.), Essen University Hospital, University of Duisburg-Essen, Germany; Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Germany; Department of Neurologic Diseases and Neurogenetics (J.G.-B.), Institut D'Investigació Biomèdica de Bellvitge, Barcelona, Spain; Department of Neurology (N.G., Anita Hennig, S.S.), Ludwig Maximilian University of Munich, Germany; Department of Neurology (Anhar Hassan), Mayo Clinic, Rochester, MN, United States; Willink Unit (S.J.), Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, United Kingdom; RK Statistics, Brook House, Mesne Lane, Bakewell DE45 1AL, United Kingdom 9. Division of Neurogenetics, New York University Langone, NY, United States; Department of Neurology (H.L.), New York University Langone School of Medicine, NY, United States; Department of Neurology (S.P.), University of California Los Angeles, CA, United States; Department of Adult Metabolic Medicine (R.S.), Salford Royal Foundation NHS Trust, United Kingdom; and Department of Neurology (T.B.-E.), University Hospital Bern (Inselspital), Switzerland
| |
Collapse
|
12
|
Saberi-Karimian M, Beyraghi-Tousi M, Mirzadeh M, Gumpricht E, Sahebkar A. The Effect of N-Acetyl-DL-Leucine on Neurological Symptoms in a Patient with Ataxia-Telangiectasia: a Case Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:96-101. [PMID: 35128617 DOI: 10.1007/s12311-022-01371-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/01/2023]
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive disorder with no available curative treatment. Although the positive effects of N-acetyl-DL-leucine on cerebellar ataxia have been reported previously, there is little evidence of N-acetyl-DL-leucine's effects in patients with AT. This study assessed the effect of 16 weeks N-acetyl-DL-leucine supplementation on ataxia symptoms in a 9-year-old female with AT. The subject consumed 4 g/day N-acetyl-DL-leucine (2 g in the morning and 2 g in the evening) for 16 weeks. Safety was assessed via clinical blood chemistry prior to the intervention and after 6 and 16 weeks. Additionally, The Scale for the Assessment and Rating of Ataxia (SARA) score was used to assess the drug's effects on ataxia symptoms at baseline, 6, 12, and 16 weeks. Quality of life has also been evaluated by a specialist using the PedsQL questionnaire.Despite some initial (first week only) nausea and constipation, supplementation with N-acetyl-DL-leucine was well tolerated and safe according to blood chemistry measures. The SARA score progressively improved, and by week 16 had improved by 11.0 points (48.88%). Parent and self-reported quality of life assessments indicated physical, emotional, social, and school functions all improved by 16 weeks. Supplementation with N-acetyl-DL-leucine at a dose of 4 g/day for 16 weeks was well tolerated and significantly improved ataxia symptoms and quality of life measures in a young child with AT.
Collapse
Affiliation(s)
- Maryam Saberi-Karimian
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Beyraghi-Tousi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoureh Mirzadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhosein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Medicine, The University of Western Australia, Perth, Australia. .,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Kaur C, Sharma S, Thakur A, Sharma R. ASYMMETRIC SYNTHESIS: A GLANCE AT VARIOUS METHODOLOGIES FOR DIFFERENT FRAMEWORKS. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220610162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Asymmetric reactions have made a significant advancement over the past few decades and involved the production of enantiomerically pure molecules using enantioselective organocatalysis, chiral auxiliaries/substrates, and reagents via controlling the absolute stereochemistry. The laboratory synthesis from an enantiomerically impure starting material gives a combination of enantiomers which are difficult to separate for chemists in the fields of medicine, chromatography, pharmacology, asymmetric synthesis, studies of structure-function relationships of proteins, life sciences and mechanistic studies. This challenging step of separation can be avoided by the use of asymmetric synthesis. Using pharmacologically relevant scaffolds/pharmacophores, the drug designing can also be achieved using asymmetric synthesis to synthesize receptor specific pharmacologically active chiral molecules. This approach can be used to synthesize asymmetric molecules from wide variety of reactants using specific asymmetric conditions which is also beneficial for environment due to less usage and discharge of chemicals into the environment. So, in this review, we have focused on the inclusive collation of diverse mechanisms in this area, to encourage auxiliary studies of asymmetric reactions to develop selective, efficient, environment-friendly and high yielding advanced processes in asymmetric reactions.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar, Punjab, 143002
| | - Sachin Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| | | | - Ram Sharma
- School of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
14
|
Qi C, Li W, Shi Q, Zhao LL, Jin W, Zhe Min J. Determination of N-acetyl-DL-leucine in the saliva of healthy volunteers and diabetic patients using ultra-performance liquid chromatography with fluorescence detection. Clin Chim Acta 2021; 526:66-73. [PMID: 34971571 DOI: 10.1016/j.cca.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent studies have indicated that N-acetyl-leucine (N-Ac-Leu) is a potential biomarker of diabetes. This study aimed to measure the levels of enantiomers of the chiral molecule N-Ac-DL-Leu in the saliva of patients with type 2 diabetes and further determine the potential association between them. METHOD A novel validated method was established using ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection, in which precolumn derivatization of (R)-(-)-4-(N, N-dimethylaminosulfonyl)-7-(3-aminopyrrolidin-l-yl)-2,1,3-benzoxadiazole [(R)-(-)-DBD-APy] was used for the simultaneous determination and chiral separation of N-Ac-DL-Leu in human saliva. RESULTS The labeled N-Ac-DL-Leu diastereomers were completely separated, with a resolution value of 1.93. Additionally, excellent linearity for N-Ac-DL-Leu was observed, with high coefficients of correlation (r2 ≥ 0.9999) in the range of 10-300 μM; the limit of quantitation (signal-to-noise ratio=10) was 40-120 pmol/mL, and the mean recoveries of N-Ac-L-Leu and N-Ac-D-Leu were 102.48% and 104.68%, respectively. The levels of N-Ac-Leu in the saliva of diabetic patients and healthy volunteers were determined, and it was found that the levels of N-Ac-DL-Leu in the saliva of diabetic patients were significantly lower than those in healthy volunteers. (p < 0.01). CONCLUSIONS The proposed method was successfully applied for the measurement of N-Ac-DL-Leu enantiomers in the saliva of diabetic patients and healthy volunteers.
Collapse
Affiliation(s)
- Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China
| | - Wenhao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China
| | - Qing Shi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China
| | - Li-Li Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China
| | - Wenlong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy Yanbian University, and Department of Pharmacy, Department of Endocrinology, Yanbian University Hospital, Yanji, 133002, Jilin, Province, China.
| |
Collapse
|
15
|
Feil K, Adrion C, Boesch S, Doss S, Giordano I, Hengel H, Jacobi H, Klockgether T, Klopstock T, Nachbauer W, Schöls L, Steiner KM, Stendel C, Timmann D, Naumann I, Mansmann U, Strupp M. Safety and Efficacy of Acetyl-DL-Leucine in Certain Types of Cerebellar Ataxia: The ALCAT Randomized Clinical Crossover Trial. JAMA Netw Open 2021; 4:e2135841. [PMID: 34905009 PMCID: PMC8672236 DOI: 10.1001/jamanetworkopen.2021.35841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Cerebellar ataxia is a neurodegenerative disease impairing motor function characterized by ataxia of stance, gait, speech, and fine motor disturbances. OBJECTIVE To investigate the efficacy, safety, and tolerability of the modified essential amino acid acetyl-DL-leucine in treating patients who have cerebellar ataxia. DESIGN, SETTING, AND PARTICIPANTS The Acetyl-DL-leucine on Cerebellar Ataxia (ALCAT) trial was an investigator-initiated, multicenter, double-blind, randomized, placebo-controlled, clinical crossover trial. The study was conducted at 7 university hospitals in Germany and Austria between January 25, 2016, and February 17, 2017. Patients were aged at least 18 years and diagnosed with cerebellar ataxia of hereditary (suspected or genetically confirmed) or nonhereditary or unknown type presenting with a total score of at least 3 points on the Scale for the Assessment and Rating of Ataxia (SARA). Statistical analysis was performed from April 2018 to June 2018 and January 2020 to March 2020. INTERVENTIONS Patients were randomly assigned (1:1) to receive acetyl-DL-leucine orally (5 g per day after 2 weeks up-titration) followed by a matched placebo, each for 6 weeks, separated by a 4-week washout, or vice versa. The randomization was done via a web-based, permuted block-wise randomization list (block size, 2) that was stratified by disease subtype (hereditary vs nonhereditary or unknown) and site. MAIN OUTCOMES AND MEASURES Primary efficacy outcome was the absolute change of SARA total score from (period-dependent) baseline to week 6. RESULTS Among 108 patients who were randomly assigned to sequence groups (54 patients each), 55 (50.9%) were female; the mean (SD) age was 54.8 (14.4) years; and the mean (SD) SARA total score was 13.33 (5.57) points. The full analysis set included 105 patients (80 patients with hereditary, 25 with nonhereditary or unknown cerebellar ataxia). There was no evidence of a difference in the mean absolute change from baseline to week 6 in SARA total scores between both treatments (mean treatment difference: 0.23 points [95% CI, -0.40 to 0.85 points]). CONCLUSIONS AND RELEVANCE In this large multicenter, double-blind, randomized, placebo-controlled clinical crossover trial, acetyl-DL-leucine in the investigated dosage and treatment duration was not superior to placebo for the symptomatic treatment of certain types of ataxia. The drug was well tolerated; and ALCAT yielded valuable information about the duration of treatment periods and the role of placebo response in cerebellar ataxia. These findings suggest that further symptom-oriented trials are needed for evaluating the long-term effects of acetyl-DL-leucine for well-defined subgroups of cerebellar ataxia. TRIAL REGISTRATION EudraCT 2015-000460-34.
Collapse
Affiliation(s)
- Katharina Feil
- Department of Neurology with Friedrich-Baur-Institute, Ludwig Maximilians University, University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig Maximilians University, University Hospital, Campus Grosshadern, Munich, Germany
- Department of Neurology and Stroke, University Hospital Tübingen, Tübingen, Germany
| | - Christine Adrion
- Institute for Medical Informatics, Biometry and Epidemiology (IBE), Ludwig Maximilians University, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Sarah Doss
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha
| | - Ilaria Giordano
- German Center for Neurodegenerative Diseases (DZNE), Center for Clinical Research, Bonn, Germany
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | - Heike Jacobi
- German Center for Neurodegenerative Diseases (DZNE), Center for Clinical Research, Bonn, Germany
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Center for Clinical Research, Bonn, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, Ludwig Maximilians University, University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Katharina Marie Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Claudia Stendel
- Department of Neurology with Friedrich-Baur-Institute, Ludwig Maximilians University, University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Ivonne Naumann
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig Maximilians University, University Hospital, Campus Grosshadern, Munich, Germany
| | - Ulrich Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology (IBE), Ludwig Maximilians University, Munich, Germany
| | - Michael Strupp
- Department of Neurology with Friedrich-Baur-Institute, Ludwig Maximilians University, University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig Maximilians University, University Hospital, Campus Grosshadern, Munich, Germany
| | | |
Collapse
|
16
|
Bremova-Ertl T, Claassen J, Foltan T, Gascon-Bayarri J, Gissen P, Hahn A, Hassan A, Hennig A, Jones SA, Kolnikova M, Martakis K, Raethjen J, Ramaswami U, Sharma R, Schneider SA. Efficacy and safety of N-acetyl-L-leucine in Niemann-Pick disease type C. J Neurol 2021; 269:1651-1662. [PMID: 34387740 PMCID: PMC8361244 DOI: 10.1007/s00415-021-10717-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the safety and efficacy of N-acetyl-L-leucine (NALL) on symptoms, functioning, and quality of life in pediatric (≥ 6 years) and adult Niemann-Pick disease type C (NPC) patients. METHODS In this multi-national, open-label, rater-blinded Phase II study, patients were assessed during a baseline period, a 6-week treatment period (orally administered NALL 4 g/day in patients ≥ 13 years, weight-tiered doses for patients 6-12 years), and a 6-week post-treatment washout period. The primary Clinical Impression of Change in Severity (CI-CS) endpoint (based on a 7-point Likert scale) was assessed by blinded, centralized raters who compared randomized video pairs of each patient performing a pre-defined primary anchor test (8-Meter Walk Test or 9-Hole Peg Test) during each study periods. Secondary outcomes included cerebellar functional rating scales, clinical global impression, and quality of life assessments. RESULTS 33 subjects aged 7-64 years with a confirmed diagnosis of NPC were enrolled. 32 patients were included in the primary modified intention-to-treat analysis. NALL met the CI-CS primary endpoint (mean difference 0.86, SD = 2.52, 90% CI 0.25, 1.75, p = 0.029), as well as secondary endpoints. No treatment-related serious adverse events occurred. CONCLUSIONS NALL demonstrated a statistically significant and clinical meaningfully improvement in symptoms, functioning, and quality of life in 6 weeks, the clinical effect of which was lost after the 6-week washout period. NALL was safe and well-tolerated, informing a favorable benefit-risk profile for the treatment of NPC. CLINICALTRIALS. GOV IDENTIFIER NCT03759639.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital), 3010, Bern, Switzerland.
| | - Jens Claassen
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurocritical Care, Neurological and Neurosurgical First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Reichshof-Eckenhagen, Germany
| | - Tomas Foltan
- Department of Pediatric Neurology, National Institute of Children's Diseases, Comenius University in Bratislva, Bratislva, Slovak Republic
| | - Jordi Gascon-Bayarri
- Department of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Paul Gissen
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Anhar Hassan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anita Hennig
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Simon A Jones
- Willink Unit, Manchester Centre for Genomic Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK
| | - Miriam Kolnikova
- Department of Pediatric Neurology, National Institute of Children's Diseases, Comenius University in Bratislva, Bratislva, Slovak Republic
| | - Kyriakos Martakis
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Jan Raethjen
- Neurology Outpatient Clinic, Kiel, Germany.,Medical Faculty, Christian Albrechts University Kiel, Kiel, Germany
| | - Uma Ramaswami
- Lysosomal Storage Disorder Unit, Royal Free London NHS Foundation Trust, London, UK
| | - Reena Sharma
- Department of Adult Metabolic Medicine, Salford Royal Foundation NHS Trust, Salford, UK
| | | |
Collapse
|
17
|
Churchill GC, Strupp M, Factor C, Bremova-Ertl T, Factor M, Patterson MC, Platt FM, Galione A. Acetylation turns leucine into a drug by membrane transporter switching. Sci Rep 2021; 11:15812. [PMID: 34349180 PMCID: PMC8338929 DOI: 10.1038/s41598-021-95255-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Small changes to molecules can have profound effects on their pharmacological activity as exemplified by the addition of the two-carbon acetyl group to make drugs more effective by enhancing their pharmacokinetic or pharmacodynamic properties. N-acetyl-D,L-leucine is approved in France for vertigo and its L-enantiomer is being developed as a drug for rare and common neurological disorders. However, the precise mechanistic details of how acetylation converts leucine into a drug are unknown. Here we show that acetylation of leucine switches its uptake into cells from the L-type amino acid transporter (LAT1) used by leucine to organic anion transporters (OAT1 and OAT3) and the monocarboxylate transporter type 1 (MCT1). Both the kinetics of MCT1 (lower affinity compared to LAT1) and the ubiquitous tissue expression of MCT1 make it well suited for uptake and distribution of N-acetyl-L-leucine. MCT1-mediated uptake of a N-acetyl-L-leucine as a prodrug of leucine bypasses LAT1, the rate-limiting step in activation of leucine-mediated signalling and metabolic process inside cells such as mTOR. Converting an amino acid into an anion through acetylation reveals a way for the rational design of drugs to target anion transporters.
Collapse
Affiliation(s)
- Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians University, Munich, Germany
| | - Cailley Factor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Inselspital, Bern, BE, Switzerland
- Center for Rare Diseases, University Hospital Inselspital Bern, Bern, BE, Switzerland
| | - Mallory Factor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| |
Collapse
|
18
|
Hegdekar N, Lipinski MM, Sarkar C. N-Acetyl-L-leucine improves functional recovery and attenuates cortical cell death and neuroinflammation after traumatic brain injury in mice. Sci Rep 2021; 11:9249. [PMID: 33927281 PMCID: PMC8084982 DOI: 10.1038/s41598-021-88693-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and long-term disability around the world. Even mild to moderate TBI can lead to lifelong neurological impairment due to acute and progressive neurodegeneration and neuroinflammation induced by the injury. Thus, the discovery of novel treatments which can be used as early therapeutic interventions following TBI is essential to restrict neuronal cell death and neuroinflammation. We demonstrate that orally administered N-acetyl-l-leucine (NALL) significantly improved motor and cognitive outcomes in the injured mice, led to the attenuation of cell death, and reduced the expression of neuroinflammatory markers after controlled cortical impact (CCI) induced experimental TBI in mice. Our data indicate that partial restoration of autophagy flux mediated by NALL may account for the positive effect of treatment in the injured mouse brain. Taken together, our study indicates that treatment with NALL would be expected to improve neurological function after injury by restricting cortical cell death and neuroinflammation. Therefore, NALL is a promising novel, neuroprotective drug candidate for the treatment of TBI.
Collapse
Affiliation(s)
- Nivedita Hegdekar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marta M Lipinski
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Chinmoy Sarkar
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Fields T, Patterson M, Bremova-Ertl T, Belcher G, Billington I, Churchill GC, Davis W, Evans W, Flint S, Galione A, Granzer U, Greenfield J, Karl R, Kay R, Lewi D, Mathieson T, Meyer T, Pangonis D, Platt FM, Tsang L, Verburg C, Factor M, Strupp M. A master protocol to investigate a novel therapy acetyl-L-leucine for three ultra-rare neurodegenerative diseases: Niemann-Pick type C, the GM2 gangliosidoses, and ataxia telangiectasia. Trials 2021; 22:84. [PMID: 33482890 PMCID: PMC7821839 DOI: 10.1186/s13063-020-05009-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The lack of approved treatments for the majority of rare diseases is reflective of the unique challenges of orphan drug development. Novel methodologies, including new functionally relevant endpoints, are needed to render the development process more feasible and appropriate for these rare populations and thereby expedite the approval of promising treatments to address patients' high unmet medical need. Here, we describe the development of an innovative master protocol and primary outcome assessment to investigate the modified amino acid N-acetyl-L-leucine (Sponsor Code: IB1001) in three separate, multinational, phase II trials for three ultra-rare, autosomal-recessive, neurodegenerative disorders: Niemann-Pick disease type C (NPC), GM2 gangliosidoses (Tay-Sachs and Sandhoff disease; "GM2"), and ataxia telangiectasia (A-T). METHODS/DESIGN The innovative IB1001 master protocol and novel CI-CS primary endpoints were developed through a close collaboration between the Industry Sponsor, Key Opinion Leaders, representatives of the Patient Communities, and National Regulatory Authorities. As a result, the open-label, rater-blinded study design is considerate of the practical limitations of recruitment and retention of subjects in these ultra-orphan populations. The novel primary endpoint, the Clinical Impression of Change in Severity© (CI-CS), accommodates the heterogenous clinical presentation of NPC, GM2, and A-T: at screening, the principal investigator appoints for each patient a primary anchor test (either the 8-m walk test (8MWT) or 9-hole peg test of the dominant hand (9HPT-D)) based on his/her unique clinical symptoms. The anchor tests are videoed in a standardized manner at each visit to capture all aspects related to the patient's functional performance. The CI-CS assessment is ultimately performed by independent, blinded raters who compare videos of the primary anchor test from three periods: baseline, the end of treatment, and the end of a post-treatment washout. Blinded to the time point of each video, the raters make an objective comparison scored on a 7-point Likert scale of the change in the severity of the patient's neurological signs and symptoms from video A to video B. To investigate both the symptomatic and disease-modifying effects of treatment, N-acetyl-L-leucine is assessed during two treatment sequences: a 6-week parent study and 1-year extension phase. DISCUSSION The novel CI-CS assessment, developed through a collaboration of all stakeholders, is advantageous in that it better ensures the primary endpoint is functionally relevant for each patient, is able to capture small but meaningful clinical changes critical to the patients' quality of life (fine-motor skills; gait), and blinds the primary outcome assessment. The results of these three trials will inform whether N-acetyl-L-leucine is an effective treatment for NPC, GM2, and A-T and can also serve as a new therapeutic paradigm for the development of future treatments for other orphan diseases. TRIAL REGISTRATION The three trials (IB1001-201 for Niemann-Pick disease type C (NPC), IB1001-202 for GM2 gangliosidoses (Tay-Sachs and Sandhoff), IB1001-203 for ataxia telangiectasia (A-T)) have been registered at www.clinicaltrials.gov (NCT03759639; NCT03759665; NCT03759678), www.clinicaltrialsregister.eu (EudraCT: 2018-004331-71; 2018-004406-25; 2018-004407-39), and https://www.germanctr.de (DR KS-ID: DRKS00016567; DRKS00017539; DRKS00020511).
Collapse
Affiliation(s)
- T. Fields
- IntraBio Ltd, Begbroke Science Park, Begbroke Hill, Woodstock Road, Oxford, OX5 1PF UK
| | - M. Patterson
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - T. Bremova-Ertl
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - G. Belcher
- PV Consultancy, 113 St Georges Square Mews, London, SW1V 3RZ UK
| | - I. Billington
- IntraBio Ltd, Begbroke Science Park, Begbroke Hill, Woodstock Road, Oxford, OX5 1PF UK
| | - G. C. Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT UK
| | - W. Davis
- Ataxia-Telangiectasia Society, Rothamsted Experimental Station West Common, Harpenden, AL5 2JQ UK
| | - W. Evans
- Niemann-Pick UK, Vermont House, Concord, Washington, Tyne and Wear NE37 2SQ UK
- Primary Care Stratified Medicine (PRISM) Division of Primary Care, University of Nottingham, Nottingham, UK
| | - S. Flint
- IntraBio Ltd, Begbroke Science Park, Begbroke Hill, Woodstock Road, Oxford, OX5 1PF UK
| | - A. Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT UK
| | - U. Granzer
- Granzer Regulatory Consulting & Services, Kistlerhofstr. 172C, D-81379 Munich, Germany
| | | | - R. Karl
- Cure Tay-Sachs Foundation, 2409 E. Luke Avenue, Phoenix, AZ 85016 USA
| | - R. Kay
- RK Statistics, Brook House, Mesne Lane, Bakewell, DE45 1AL UK
| | - D. Lewi
- The Cure & Action for Tay-Sachs Foundation, 94 Milborough Crescent, Lee, London, SE12 0RW UK
| | - T. Mathieson
- International Niemann-Pick Disease Alliance, Vermont House, Concord, Washington, Tyne and Wear NE37 2SQ UK
| | - T. Meyer
- Granzer Regulatory Consulting & Services, Kistlerhofstr. 172C, D-81379 Munich, Germany
| | - D. Pangonis
- National Tay-Sachs and Allied Disease Foundation, 2001 Beacon Street, Suite 204, Boston, MA 02135 USA
| | - F. M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT UK
| | - L. Tsang
- Arnold & Porter Kaye Scholer LLP, 25 Old Broad Street, London, EC2N 1HQ UK
| | - C. Verburg
- IntraBio Ltd, Begbroke Science Park, Begbroke Hill, Woodstock Road, Oxford, OX5 1PF UK
| | - M. Factor
- IntraBio Ltd, Begbroke Science Park, Begbroke Hill, Woodstock Road, Oxford, OX5 1PF UK
| | - M. Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, University Hospital, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
20
|
Kaya E, Smith DA, Smith C, Morris L, Bremova-Ertl T, Cortina-Borja M, Fineran P, Morten KJ, Poulton J, Boland B, Spencer J, Strupp M, Platt FM. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun 2020; 3:fcaa148. [PMID: 33738443 PMCID: PMC7954382 DOI: 10.1093/braincomms/fcaa148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acetyl-dl-leucine is a derivative of the branched chain amino acid leucine. In observational clinical studies, acetyl-dl-leucine improved symptoms of ataxia, in particular in patients with the lysosomal storage disorder, Niemann-Pick disease type C1. Here, we investigated acetyl-dl-leucine and its enantiomers acetyl-l-leucine and acetyl-d-leucine in symptomatic Npc1-/- mice and observed improvement in ataxia with both individual enantiomers and acetyl-dl-leucine. When acetyl-dl-leucine and acetyl-l-leucine were administered pre-symptomatically to Npc1-/- mice, both treatments delayed disease progression and extended life span, whereas acetyl-d-leucine did not. These data are consistent with acetyl-l-leucine being the neuroprotective enantiomer. Altered glucose and antioxidant metabolism were implicated as one of the potential mechanisms of action of the l-enantiomer in Npc1-/- mice. When the standard of care drug miglustat and acetyl-dl-leucine were used in combination significant synergy resulted. In agreement with these pre-clinical data, when Niemann-Pick disease type C1 patients were evaluated after 12 months of acetyl-dl-leucine treatment, rates of disease progression were slowed, with stabilization or improvement in multiple neurological domains. A beneficial effect of acetyl-dl-leucine on gait was also observed in this study in a mouse model of GM2 gangliosidosis (Sandhoff disease) and in Tay-Sachs and Sandhoff disease patients in individual-cases of off-label-use. Taken together, we have identified an unanticipated neuroprotective effect of acetyl-l-leucine and underlying mechanisms of action in lysosomal storage diseases, supporting its further evaluation in clinical trials in lysosomal disorders.
Collapse
Affiliation(s)
- Ecem Kaya
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - David A Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Claire Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Lauren Morris
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tatiana Bremova-Ertl
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.,Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, 81377 München, Germany
| | - Mario Cortina-Borja
- Population, Policy and Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Paul Fineran
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital OX3 9DU, Oxford, UK
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital OX3 9DU, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, Western Gateway Building, College of Medicine and Health, University College Cork, Cork, T12XF62, Ireland
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9RH UK
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, 81377 München, Germany
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
Beneficial Effects of Acetyl-DL-Leucine (ADLL) in a Mouse Model of Sandhoff Disease. J Clin Med 2020; 9:jcm9041050. [PMID: 32276303 PMCID: PMC7230825 DOI: 10.3390/jcm9041050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sandhoff disease is a rare neurodegenerative lysosomal storage disease associated with the storage of GM2 ganglioside in late endosomes/lysosomes. Here, we explored the efficacy of acetyl-DL-leucine (ADLL), which has been shown to improve ataxia in observational studies in patients with Niemann-Pick Type C1 and other cerebellar ataxias. We treated a mouse model of Sandhoff disease (Hexb-/-) (0.1 g/kg/day) from 3 weeks of age with this orally available drug. ADLL produced a modest but significant increase in life span, accompanied by improved motor function and reduced glycosphingolipid (GSL) storage in the forebrain and cerebellum, in particular GA2. ADLL was also found to normalize altered glucose and glutamate metabolism, as well as increasing autophagy and the reactive oxygen species (ROS) scavenger, superoxide dismutase (SOD1). Our findings provide new insights into metabolic abnormalities in Sandhoff disease, which could be targeted with new therapeutic approaches, including ADLL.
Collapse
|