1
|
Petterson J, Mustafa D, Bandaru S, Eklund EÄ, Hallqvist A, Sayin VI, Gagné A, Fagman H, Akyürek LM. Pulmonary Adenocarcinoma In Situ and Minimally Invasive Adenocarcinomas in European Patients Have Less KRAS and More EGFR Mutations Compared to Advanced Adenocarcinomas. Int J Mol Sci 2024; 25:2959. [PMID: 38474205 DOI: 10.3390/ijms25052959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Pulmonary adenocarcinoma (ADC) is a very diverse disease, both genetically and histologically, which displays extensive intratumor heterogeneity with numerous acquired mutations. ADC is the most common type of lung cancer and is believed to arise from adenocarcinoma in situ (AIS) which then progresses to minimally invasive adenocarcinoma (MIA). In patients of European ethnicity, we analyzed genetic mutations in AIS (n = 10) and MIA (n = 18) and compared the number of genetic mutations with advanced ADC (n = 2419). Using next-generation sequencing, the number of different mutations detected in both AIS (87.5%) and MIA (94.5%) were higher (p < 0.001) than in advanced ADC (53.7%). In contrast to the high number of mutations in Kirsten rat sarcoma virus gene (KRAS) in advanced ADC (34.6%), there was only one case of AIS with KRAS G12C mutation (3.5%; p < 0.001) and no cases of MIA with KRAS mutation (p < 0.001). In contrast to the modest prevalence of epidermal growth factor receptor (EGFR) mutations in advanced ADC (15.0%), the fraction of EGFR mutant cases was higher in both in AIS (22.2%) and MIA (59.5%; p < 0.001). The EGFR exon 19 deletion mutation was more common in both MIA (50%; n = 6/12) and ADC (41%; n = 149/363), whereas p.L858R was more prevalent in AIS (75%; n = 3/4). In contrast to pulmonary advanced ADC, KRAS driver mutations are less common, whereas mutations in EGFR are more common, in detectable AIS and MIA.
Collapse
Affiliation(s)
- Jennie Petterson
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
| | - Dyar Mustafa
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
| | - Sashidar Bandaru
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
| | - Ella Äng Eklund
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
- Department of Clinical Oncology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
| | - Andreas Hallqvist
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
- Department of Clinical Oncology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
| | - Volkan I Sayin
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 413 45 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Andréanne Gagné
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
| | - Levent M Akyürek
- Department of Clinical Pathology, Sahlgrenska University Hospital, Västra Götalandsregionen, 413 45 Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska Academy, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
3
|
Rekaya MB, Ksontini F, Kacem LBH, Sassi F, Harigua‐Souiai E, Boujneh R, H'mayada A, Zaimi Y, Ayadi M, Trabelsi M, Mrad R, Rammeh S. Pathologic complete response to neoadjuvant imatinib of a gastric stromal tumor with concomitant mutations in KIT: A case report and literature review. Clin Case Rep 2023; 11:e7463. [PMID: 37305871 PMCID: PMC10248213 DOI: 10.1002/ccr3.7463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Key clinical message We report the first case of pathologic complete response (pCR) to neoadjuvant imatinib in a gastric stromal tumor harboring KIT mutations in both exons 11 and 9. The significance of this co-occurrence is unknown and might increase the responsiveness of gastrointestinal stromal tumors (GISTs) to imatinib. Abstract pCR of GIST to neoadjuvant imatinib is rare. We report a case of pCR to neoadjuvant imatinib in a gastric stromal tumor that harbored co-occurrence of multiple KIT mutations in exons 11 and 9. This co-occurrence in exons 9 and 11 is the first to be reported in the English literature.
Collapse
Affiliation(s)
- Mariem Ben Rekaya
- Theranostic Biomarkers, UR17ES15, Faculty of Medicine of TunisUniversité Tunis El ManarTunisTunisia
- Pathology DepartmentCharles Nicolle HospitalTunisTunisia
| | - Feryel Ksontini
- Medical Oncology DepartmentSalah Azaiez InstituteTunisTunisia
| | - Linda Bel Haj Kacem
- Theranostic Biomarkers, UR17ES15, Faculty of Medicine of TunisUniversité Tunis El ManarTunisTunisia
- Pathology DepartmentCharles Nicolle HospitalTunisTunisia
| | - Farah Sassi
- Pathology DepartmentCharles Nicolle HospitalTunisTunisia
| | - Emna Harigua‐Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology – LR16IPT04Institut Pasteur de Tunis, Université de Tunis El ManarTunisTunisia
| | - Ryma Boujneh
- Medical Oncology DepartmentSalah Azaiez InstituteTunisTunisia
| | - Ahmed H'mayada
- Theranostic Biomarkers, UR17ES15, Faculty of Medicine of TunisUniversité Tunis El ManarTunisTunisia
| | - Yosra Zaimi
- Gastroenterology DepartmentCharles Nicolle HospitalTunisTunisia
| | - Mouna Ayadi
- Medical Oncology DepartmentSalah Azaiez InstituteTunisTunisia
| | - Mediha Trabelsi
- Department of Hereditary and Congenital DisordersCharles Nicolle HospitalTunisTunisia
| | - Ridha Mrad
- Department of Hereditary and Congenital DisordersCharles Nicolle HospitalTunisTunisia
| | - Soumaya Rammeh
- Theranostic Biomarkers, UR17ES15, Faculty of Medicine of TunisUniversité Tunis El ManarTunisTunisia
- Pathology DepartmentCharles Nicolle HospitalTunisTunisia
| |
Collapse
|
4
|
Uenosono Y, Kawakami R, Matsumoto S, Yamaguchi Y. Construction of an experimental study and addition of adapter sequences using HiDi DNA polymerase for improving DNA normalization methods relevant to novel gene discovery. J Microbiol Methods 2023; 204:106631. [PMID: 36503828 DOI: 10.1016/j.mimet.2022.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Microorganisms in the environment can be distinguished into dominant and rare microbial species based on their genes. It is difficult to obtain genetic information derived from rare microbial species (rare genes) because of the differences in relative abundance. DNA normalization is an approach that is used to obtain genetic information derived from rare microbial species from an environmental sample. This method involves the addition of adapter sequences for the amplification, denaturation, and reassociation of the DNA fragments and single-stranded DNA (ssDNA)/double-stranded DNA (dsDNA) separation. In this method, the amount of a high-copy-number of DNA fragments and a low-copy-number of DNA fragments can be equalized. Improvements in this technique are expected to provide novel genetic information or genes in rare microbial species. However, few model experimental systems have been reported to validate the DNA normalization techniques. This study is aimed to improve the DNA normalization technique used to obtain genetic information of rare genes from rare microbial species. An experimental study was constructed with two antibiotic resistance genes, whose copy numbers differed up to a million-fold. Both genes were mixed and the mixture of DNA fragments, of high- and low-copy-number, containing these genes was normalized by separating ssDNA/dsDNA fragments using hydroxyapatite. Normalized DNA fragments were introduced into Escherichia coli and DNA normalization was evaluated by counting colonies. Moreover, we improved the method to amplify a low-copy-number of DNA fragments by the addition of adapter sequences to DNA fragments using HiDi DNA polymerase to increase the efficiency of DNA normalization. This normalization method was achieved with a 100,000-fold difference. These methods allowed for quantitative evaluation of the DNA normalization efficiency. The experimental data and methods obtained in this study are expected to improve the DNA normalization efficiency to obtain novel genetic information or genes.
Collapse
Affiliation(s)
- Yuya Uenosono
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Ryohei Kawakami
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Shogo Matsumoto
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Yamaguchi
- Department of Materials Science and Applied Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860-8555, Japan; Environmental Safety Center, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
5
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
6
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Mao L, Zhao W, Li X, Zhang S, Zhou C, Zhou D, Ou X, Xu Y, Tang Y, Ou X, Hu C, Ding X, Luo P, Yu S. Mutation Spectrum of EGFR From 21,324 Chinese Patients With Non-Small Cell Lung Cancer (NSCLC) Successfully Tested by Multiple Methods in a CAP-Accredited Laboratory. Pathol Oncol Res 2021; 27:602726. [PMID: 34257561 PMCID: PMC8262202 DOI: 10.3389/pore.2021.602726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
Genotyping epidermal growth factor receptor (EGFR) gene in patients with advanced non-small cell lung cancers (NSCLC) is essential for identifying those patients who may benefit from targeted therapies. Systemically evaluating EGFR mutation detection rates of different methods currently used in clinical setting will provide valuable information to clinicians and laboratory scientists who take care of NSCLC patients. This study retrospectively reviewed the EGFR data obtained in our laboratory in last 10 years. A total of 21,324 NSCLC cases successfully underwent EGFR genotyping for clinical therapeutic purpose, including 5,244 cases tested by Sanger sequencing, 13,329 cases tested by real-time PCR, and 2,751 tested by next-generation sequencing (NGS). The average EGFR mutation rate was 45.1%, with 40.3% identified by Sanger sequencing, 46.5% by real-time PCR and 47.5% by NGS. Of these cases with EGFR mutations identified, 93.3% of them harbored a single EGFR mutation (92.1% with 19del or L858R, and 7.9% with uncommon mutations) and 6.7% harbored complex EGFR mutations. Of the 72 distinct EGFR variants identified in this study, 15 of them (single or complex EGFR mutations) were newly identified in NSCLC. For these cases with EGFR mutations tested by NGS, 65.3% of them also carried tumor-related variants in some non-EGFR genes and about one third of them were considered candidates of targeted drugs. NGS method showed advantages over Sanger sequencing and real-time PCR not only by providing the highest mutation detection rate of EGFR but also by identifying actionable non-EGFR mutations with targeted drugs in clinical setting.
Collapse
Affiliation(s)
- Linlin Mao
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Weiwei Zhao
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Xiaoxia Li
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Shangfei Zhang
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Changhong Zhou
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Danyan Zhou
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Xiaohua Ou
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
- Institute of KingMed Translational Medicine, Guangzhou, China
| | - Yanyan Xu
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Yuanxiao Tang
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Xiaoyong Ou
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Changming Hu
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
| | - Xiangdong Ding
- Department of Pathology, KingMed Diagnostics, Guangzhou, China
| | - Pifu Luo
- Department of Pathology, KingMed Diagnostics, Guangzhou, China
| | - Shihui Yu
- Clinical Genome Center, KingMed Diagnostics, Guangzhou, China
- Institute of KingMed Translational Medicine, Guangzhou, China
| |
Collapse
|
8
|
Herrera‐Solorio AM, Peralta‐Arrieta I, Armas López L, Hernández‐Cigala N, Mendoza Milla C, Ortiz Quintero B, Catalán Cárdenas R, Pineda Villegas P, Rodríguez Villanueva E, Trejo Iriarte CG, Zúñiga J, Arrieta O, Ávila‐Moreno F. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol 2021; 15:1110-1129. [PMID: 33433063 PMCID: PMC8024737 DOI: 10.1002/1878-0261.12875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/31/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The involvement of LncRNA SOX2-overlapping transcript (SOX2-OT), SOX2, and GLI-1 transcription factors in cancer has been well documented. Nonetheless, it is still unknown whether co-expressed SOX2-OT/SOX2 or SOX2-OT/SOX2/GLI-1 axes are epigenetically/transcriptionally involved in terms of resistance to oncology therapy and in poorer clinical outcomes for patients with lung cancer. We evaluated the role of SOX2-OT/SOX2 and SOX2-OT/SOX2/GLI-1 axes using RT-qPCR, western blot, immunofluorescence analyses, gene silencing, cellular cytotoxic, and ChIP-qPCR assays on human cell lines, solid lung malignant tumors, and normal lung tissue. We detected that the SOX2-OT/SOX2/GLI-1 axis promotes resistance to tyrosine kinase inhibitor (TKI)-erlotinib and cisplatin-based therapy. Evidence from this study show that SOX2-OT modulates the expression/activation of EGFR-pathway members AKT/ERK. Further, both SOX2-OT and GLI-1 genes are epigenetically regulated at their promoter sequences, in an LncRNA SOX2-OT-dependent manner, mainly through modifying the enrichment of the activation histone mark H3K4me3/H3K27Ac, versus the repressive histone mark H3K9me3/H3K27me3. In addition, we identified that inhibition of SOX2-OT and reduced expression of SOX2/GLI-1 sensitizes lung cancer cells to EGFR/TKI-erlotinib or cisplatin-based treatment. Finally, we show that high co-expression of SOX2-OT/SOX2 transcripts and SOX2/GLI-1 proteins appears to correlate with a poor clinical prognosis and lung malignant phenotype. Collectively, these results present evidence that LncRNA SOX2-OT modulates an orchestrated resistance mechanism, promoting poor prognosis and human lung malignancy through genetic, epigenetic, and post-translational mechanisms.
Collapse
Affiliation(s)
- Abril Marcela Herrera‐Solorio
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Irlanda Peralta‐Arrieta
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Leonel Armas López
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Nallely Hernández‐Cigala
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Criselda Mendoza Milla
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Blanca Ortiz Quintero
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Rodrigo Catalán Cárdenas
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Priscila Pineda Villegas
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
| | - Evelyn Rodríguez Villanueva
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Cynthia G. Trejo Iriarte
- Grupo de Investigación en Células Troncales e Ingeniería de Tejidos (GICTIT)Laboratorio de Investigación en Odontología AlmarazFES‐IztacalaNational Autonomous University of México (UNAM)Tlalnepantla de BazMexico
| | - Joaquín Zúñiga
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| | - Oscar Arrieta
- Thoracic Oncology UnitLaboratory of Personalized MedicineInstituto Nacional de Cancerología (INCAN)Mexico CityMexico
| | - Federico Ávila‐Moreno
- Biomedicine Research Unit (UBIMED)Lung Diseases and Cancer Epigenomics LaboratoryFacultad de Estudios Superiores (FES) IztacalaNational Autonomous University of Mexico (UNAM)Tlalnepantla de BazMexico
- National Institute of Respiratory Diseases (INER), Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
9
|
Li D, Ding L, Ran W, Huang Y, Li G, Wang C, Xiao Y, Wang X, Lin D, Xing X. Status of 10 targeted genes of non-small cell lung cancer in eastern China: A study of 884 patients based on NGS in a single institution. Thorac Cancer 2020; 11:2580-2589. [PMID: 32729257 PMCID: PMC7471050 DOI: 10.1111/1759-7714.13577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The status of targeted genes and the association between targeted genes and clinicopathological features in Chinese lung cancer patients remains to be elucidated. METHODS The status of 10 targeted genes was evaluated by next-generation sequencing (NGS) in 884 non-small cell lung cancer (NSCLC) patients. The relationship between gene alterations and clinicopathological characters was analyzed. RESULTS Overall, 684 (77.4%) patients harbored gene alterations, and EGFR (510, 57.7%) was found to be the most common type of mutation followed by KRAS (91, 10.3%), HER2 (38, 4.3%), PIK3CA (32, 3.6%), ALK (21, 2.4%), BRAF (10, 1.1%), ROS1 (5, 0.6%), RET (5, 0.6%), MET (4, 0.5%) and NRAS (1, 0.1%). Gene alterations were more frequent in females, non-smokers and adenocarcinoma (P < 0.001). EGFR mutations were associated with women, non-smokers, normal level of serum tumor markers, and adenocarcinoma (P < 0.001). Patients without lymph node metastasis (P = 0.012), or early stage disease (P < 0.001) exhibited a higher EGFR mutation rate. KRAS mutations tended to arise in men (P < 0.001), smokers (P < 0.001) and patients with higher levels of serum tumor markers (P = 0.048). A mucus-producing component was associated with KRAS (P < 0.001), ROS1 (P = 0.033) and ALK (P < 0.001) alterations. ALK and ROS1 rearrangements were more frequent in micropapillary structures (P = 0.004, P = 0.012). BRAF mutation was associated with advanced disease patients and micropapillary structure (P < 0.001). PIK3CA mutation was more likely to be found in elderly patients (P = 0.014). Some patients had synchronous gene alterations, including EGFR/PIK3CA, EGFR/HER2, HER2/KRAS, EGFR/KRAS, EGFR/ROS1, EGFR/NRAS, KRAS/PIK3CA, KRAS/PIK3CA/HER2. CONCLUSIONS Most patients had at least one genetic alteration, and individual patients harbored synchronous mutation. Each gene alteration had unique clinicopathological characteristics. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: This study revealed the frequency and distribution of 10 targeted gene abnormalities and their association with clinicopathological parameters of Chinese non-small cell lung cancer (NSCLC) patients in eastern China. WHAT THIS STUDY ADDS Some rare synchronous mutations were detected in our study by next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Dan Li
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Li Ding
- Medical Affairs DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Wenwen Ran
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yan Huang
- Department of Human ResourcesThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Guangqi Li
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chengqin Wang
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yujing Xiao
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaonan Wang
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dongliang Lin
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoming Xing
- Department of PathologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|