1
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
2
|
Sawada H, Kazama T, Nagaoka Y, Arai Y, Kano K, Uei H, Tokuhashi Y, Nakanishi K, Matsumoto T. Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability. J Orthop Surg Res 2023; 18:191. [PMID: 36906634 PMCID: PMC10007822 DOI: 10.1186/s13018-023-03678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model. METHODS BM-DFATs, SC-DFATs, BM-MSCs, and ASCs were prepared from tissue samples of knee osteoarthritis patients who received total knee arthroplasty. Cell surface antigens, gene expression profile, and in vitro differentiation capacity of these cells were determined. In vivo bone regenerative ability of these cells was evaluated by micro-computed tomography imaging at 28 days after local injection of the cells with peptide hydrogel (PHG) in the femoral fracture model in severe combined immunodeficiency mice. RESULTS BM-DFATs were successfully generated at similar efficiency as SC-DFATs. Cell surface antigen and gene expression profiles of BM-DFATs were similar to those of BM-MSCs, whereas these profiles of SC-DFATs were similar to those of ASCs. In vitro differentiation analysis revealed that BM-DFATs and BM-MSCs had higher differentiation tendency toward osteoblasts and lower differentiation tendency toward adipocytes compared to SC-DFATs and ASCs. Transplantation of BM-DFATs and BM-MSCs with PHG enhanced bone mineral density at the injection sites compared to PHG alone in the mouse femoral fracture model. CONCLUSIONS We showed that phenotypic characteristics of BM-DFATs were similar to those of BM-MSCs. BM-DFATs exhibited higher osteogenic differentiation potential and bone regenerative ability compared to SC-DFATs and ASCs. These results suggest that BM-DFATs may be suitable sources of cell-based therapies for patients with nonunion bone fracture.
Collapse
Affiliation(s)
- Hirokatsu Sawada
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuki Nagaoka
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Uei
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
3
|
Cardeña-Núñez S, Callejas-Marín A, Villa-Carballar S, Rodríguez-Gallardo L, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. CRABP-I Expression Patterns in the Developing Chick Inner Ear. BIOLOGY 2023; 12:biology12010104. [PMID: 36671796 PMCID: PMC9855850 DOI: 10.3390/biology12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions, regarded as an excellent system for analyzing events that occur during development, such as patterning, morphogenesis, and cell specification. Retinoic acid (RA) is involved in all these development processes. Cellular retinoic acid-binding proteins (CRABPs) bind RA with high affinity, buffering cellular free RA concentrations and consequently regulating the activation of precise specification programs mediated by particular regulatory genes. In the otic vesicle, strong CRABP-I expression was detected in the otic wall's dorsomedial aspect, where the endolymphatic apparatus develops, whereas this expression was lower in the ventrolateral aspect, where part of the auditory system forms. Thus, CRABP-I proteins may play a role in the specification of the dorsal-to-ventral and lateral-to-medial axe of the otic anlagen. Regarding the developing sensory patches, a process partly involving the subdivision of a ventromedial pro-sensory domain, the CRABP-I gene displayed different levels of expression in the presumptive territory of each sensory patch, which was maintained throughout development. CRABP-I was also relevant in the acoustic-vestibular ganglion and in the periotic mesenchyme. Therefore, CRABP-I could protect RA-sensitive cells in accordance with its dissimilar concentration in specific areas of the developing chick inner ear.
Collapse
|
4
|
Interleukin-1β triggers matrix metalloprotease-3 expression through p65/RelA activation in melanoma cells. PLoS One 2022; 17:e0278220. [PMID: 36445856 PMCID: PMC9707762 DOI: 10.1371/journal.pone.0278220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Melanoma shows highly aggressive behavior (i.e., local invasion and metastasis). Matrix metalloprotease-3 (MMP-3), a zinc-dependent endopeptidase, degrades several extracellular substrates and contributes to local invasion by creating a microenvironment suitable for tumor development. Here, we report that interleukin-1β (IL-1β) triggers the MMP-3 expression in canine melanoma cells. The activity of MMP-3 in the culture supernatant was increased in IL-1β-treated melanoma cells. IL-1β time- and dose-dependently provoked the mRNA expression of MMP-3. IL-1β induced the migration of melanoma cells; however, this migration was attenuated by UK356618, an MMP-3 inhibitor. When the cells were treated with the nuclear factor-κB (NF-κB) inhibitor TPCA-1, the inhibition of MMP-3 expression was observed. In IL-1β-treated cells, the phosphorylation both of p65/RelA and p105 was detected, indicating NF-κB pathway activation. In p65/RelA-depleted melanoma cells, IL-1β-mediated mRNA expression of MMP-3 was inhibited, whereas this reduction was not observed in p105-depleted cells. These findings suggest that MMP-3 expression in melanoma cells is regulated through IL-1β-mediated p65/RelA activation, which is involved in melanoma cell migration.
Collapse
|
5
|
Mizuno M, Nakano R, Nose S, Matsumura M, Nii Y, Kurogochi K, Sugiya H, Uechi M. Canonical NF-κB p65, but Not p105, Contributes to IL-1β-Induced IL-8 Expression in Cardiac Fibroblasts. Front Immunol 2022; 13:863309. [PMID: 35514973 PMCID: PMC9065446 DOI: 10.3389/fimmu.2022.863309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibroblasts participate in the inflammatory process of heart diseases as sentinel cells of the cardiac tissue. In this study, we investigated the effect of the proinflammatory cytokine, interleukin 1β (IL-1β), on the expression of interleukin 8 (IL-8), which contributes to the induction of innate immunity via the activation and recruitment of innate immune cells, such as neutrophils, to the site of inflammation in canine cardiac fibroblasts. IL-1β mediates IL-8 mRNA expression and protein release in a dose- and time-dependent manner. The IL-β-mediated IL-8 protein release and mRNA expression were inhibited by 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide, an inhibitor of the transcription factor, nuclear factor (NF)-κB. In cells treated with IL-1β, NF-κB p65 and p105 were transiently phosphorylated, indicating the activation of NF-κB. However, IL-1β failed to induce IL-8 mRNA expression in the cells transfected with p65 small interfering RNA (siRNA), but not in those transfected with p105 siRNA. These observations suggest that IL-1β induces IL-8 expression via the activation of NF-κB p65 in canine cardiac fibroblasts.
Collapse
Affiliation(s)
- Masashi Mizuno
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Rei Nakano
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan.,Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.,Laboratory of Veterinary Radiotherapy, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Saki Nose
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Moeka Matsumura
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Yasuyuki Nii
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | | | - Hiroshi Sugiya
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Masami Uechi
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| |
Collapse
|
6
|
Naruke A, Nakano R, Nunomura J, Suwabe Y, Nakano M, Namba S, Kitanaka T, Kitanaka N, Sugiya H, Nakayama T. Tpl2 contributes to IL-1β-induced IL-8 expression via ERK1/2 activation in canine dermal fibroblasts. PLoS One 2021; 16:e0259489. [PMID: 34735542 PMCID: PMC8568182 DOI: 10.1371/journal.pone.0259489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
In autoimmune diseases, fibroblasts produce and secrete various cytokines and act as sentinel immune cells during inflammatory states. However, the contribution of sentinel immune cells (i.e. dermal fibroblasts) in autoimmune diseases of the skin, such as atopic dermatitis, has been obscure. The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the expression of chemokines, such as interleukin 8 (IL-8), in autoimmune diseases of the skin. IL-8 induces the activation and recruitment of innate immune cells such as neutrophils to the site of inflammation. IL-1β-mediated induction of IL-8 expression is important for the pathogenesis of autoimmune diseases; however, the intracellular singling remains to be understood. To elucidate the mechanism of the onset of autoimmune diseases, we established a model for IL-1β-induced dermatitis and investigated MAPK signaling pathways in IL-1β-induced IL-8 expression. We also identified that a MAP3K Tpl2 acts as an upstream modulator of IL-1β-induced ERK1/2 activation in dermal fibroblasts. We observed an increase in the expression of IL-8 mRNA and protein in cells treated with IL-1β. ERK1/2 inhibitors significantly reduced IL-1β-induced IL-8 expression, whereas the inhibitor for p38 MAPK or JNK had no effect. IL-1β induced ERK1/2 phosphorylation, which was attenuated in the presence of an ERK1/2 inhibitor. IL-1β failed to induce IL-8 expression in cells transfected with siRNA for ERK1, or ERK2. Notably, a Tpl2 inhibitor reduced IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. We confirmed that the silencing of Tpl2 in siRNA-transfected fibroblasts prevented both in IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. Taken together, our data indicate the importance of Tpl2 in the modulation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the dermal tissue, such as atopic dermatitis.
Collapse
Affiliation(s)
- Atsuto Naruke
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Junichi Nunomura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Masumi Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| |
Collapse
|
7
|
Suwabe Y, Nakano R, Namba S, Yachiku N, Kuji M, Sugimura M, Kitanaka N, Kitanaka T, Konno T, Sugiya H, Nakayama T. Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells. PLoS One 2021; 16:e0243859. [PMID: 33539362 PMCID: PMC7861381 DOI: 10.1371/journal.pone.0243859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The rate of glucose uptake dramatically increases in cancer cells even in the presence of oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell growth in a time- and dose-dependent manner. Cell growth was also inhibited following treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and GLUT3 plays a crucial role for the growth of canine melanoma cells.
Collapse
Affiliation(s)
- Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Naoya Yachiku
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Manami Kuji
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Mana Sugimura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
8
|
Nakano R, Kitanaka T, Namba S, Kitanaka N, Suwabe Y, Konno T, Yamazaki J, Nakayama T, Sugiya H. Non-Transcriptional and Translational Function of Canonical NF- κB Signaling in Activating ERK1/2 in IL-1 β-Induced COX-2 Expression in Synovial Fibroblasts. Front Immunol 2020; 11:579266. [PMID: 33117381 PMCID: PMC7576893 DOI: 10.3389/fimmu.2020.579266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the synthesis of prostaglandin E2 by upregulating cyclooxygenase-2 (COX-2) in the synovial tissue of individuals with autoimmune diseases, such as rheumatoid arthritis (RA). IL-1β-mediated stimulation of NF-κB and MAPK signaling is important for the pathogenesis of RA; however, crosstalk(s) between NF-κB and MAPK signaling remains to be understood. In this study, we established a model for IL-1β-induced synovitis and investigated the role of NF-κB and MAPK signaling in synovitis. We observed an increase in the mRNA and protein levels of COX-2 and prostaglandin E2 release in cells treated with IL-1β. NF-κB and ERK1/2 inhibitors significantly reduced IL-1β-induced COX-2 expression. IL-1β induced the phosphorylation of canonical NF-κB complex (p65 and p105) and degradation of IκBα. IL-1β also induced ERK1/2 phosphorylation but did not affect the phosphorylation levels of p38 MAPK and JNK. IL-1β failed to induce COX-2 expression in cells transfected with siRNA for p65, p105, ERK1, or ERK2. Notably, NF-κB inhibitors reduced IL-1β-induced ERK1/2 phosphorylation; however, the ERK1/2 inhibitor had no effect on the phosphorylation of the canonical NF-κB complex. Although transcription and translation inhibitors had no effect on IL-1β-induced ERK1/2 phosphorylation, the silencing of canonical NF-κB complex in siRNA-transfected fibroblasts prevented IL-1β-induced phosphorylation of ERK1/2. Taken together, our data indicate the importance of the non-transcriptional/translational activity of canonical NF-κB in the activation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the synovial tissue, such as RA.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Suwabe
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Yamazaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
9
|
Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020; 9:cells9081802. [PMID: 32751228 PMCID: PMC7464089 DOI: 10.3390/cells9081802] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
JNK is a protein kinase, which induces transactivation of c-jun. The three isoforms of JNK, JNK1, JNK2, and JNK3, are encoded by three distinct genes. JNK1 and JNK2 are expressed ubiquitously throughout the body. By contrast, the expression of JNK3 is limited and observed mainly in the brain, heart, and testes. Concerning the biological properties of JNKs, the contribution of upstream regulators and scaffold proteins plays an important role in the activation of JNKs. Since JNK signaling has been described as a form of stress-response signaling, the contribution of JNK3 to pathophysiological events, such as stress response or cell death including apoptosis, has been well studied. However, JNK3 also regulates the physiological functions of neurons and non-neuronal cells, such as development, regeneration, and differentiation/reprogramming. In this review, we shed light on the physiological functions of JNK3. In addition, we summarize recent advances in the knowledge regarding interactions between JNK3 and cellular reprogramming.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
- Correspondence:
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan; (T.N.); (H.S.)
| |
Collapse
|