1
|
Udomkarnjananun S, Schagen MR, Volarević H, van de Velde D, Dieterich M, Matic M, Baan CC, Reinders MEJ, de Winter BCM, Hesselink DA. Prediction of the Intra-T Lymphocyte Tacrolimus Concentration after Kidney Transplantation with Population Pharmacokinetic Modeling. Clin Pharmacol Ther 2025; 117:162-173. [PMID: 39139076 DOI: 10.1002/cpt.3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
The intracellular tacrolimus concentration in CD3+ T lymphocytes is proposed to be a better representative of the active component of tacrolimus than the whole blood concentration. However, intracellular measurements are complicated. Therefore, the aim of this study was to describe the relationship between intracellular and whole blood tacrolimus concentrations in a population pharmacokinetic model. Twenty-eight de novo kidney transplant recipients, treated with a once-daily oral extended-release tacrolimus formulation, were followed during the first-month post-transplantation. Additional whole blood and intracellular tacrolimus concentrations were measured at day 6 ± 1 (pre-dose, 4 and 8 hours post-dose) and day 14 ± 3 (pre-dose) post-transplantation. Pharmacokinetic analysis was performed using nonlinear mixed effects modeling software (NONMEM). The ratio between intracellular (n = 109) and whole blood (n = 248) concentrations was best described by a two-compartment whole blood model with an additional intracellular compartment without mass transfer from the central compartment. The ratio remained stable over time. Prednisolone dose influenced the absorption rate of tacrolimus, while hemoglobin, CYP3A4*22 allele carrier, and CYP3A5 expresser status were associated with the oral clearance of tacrolimus (P-value < 0.001). Furthermore, the intracellular tacrolimus concentrations were correlated with the intracellular production of interleukin-2 (P-value 0.015). The intracellular tacrolimus concentration can be predicted from a measured whole blood concentration using this model, without the need for repeated intracellular measurements. This knowledge is particularly important when the intracellular concentration is ready to be implemented into clinical practice, to overcome the complexities of cell isolation and analytical methods.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Thai Red Cross Society, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Maaike R Schagen
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
| | - Helena Volarević
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Daan van de Velde
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Rotterdam Clinical Pharmacometrics Group, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Sallustio BC. Alternate Sampling Matrices for Therapeutic Drug Monitoring of Immunosuppressants. Ther Drug Monit 2024:00007691-990000000-00292. [PMID: 39592182 DOI: 10.1097/ftd.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Immunosuppressant (IS) therapeutic drug monitoring (TDM) relies on measuring mostly pharmacologically inactive erythrocyte-bound and/or plasma protein-bound drug levels. Variations in hematocrit and plasma protein levels complicate interpretation of blood calcineurin inhibitor (CNI) and inhibitors of the molecular target of rapamycin (mTORi) concentrations. Variable binding of mycophenolic acid (MPA) to albumin similarly complicates its TDM in plasma. A different matrix may improve IS concentration-response relationships and better reflect exposures at sites of action. METHODS This review explores the evidence for IS TDM using peripheral blood mononuclear cell (PBMC), graft tissue, and total or unbound plasma concentrations. RESULTS Tandem mass spectrometry provides the sensitivity for assessing these matrices. But several challenges must be addressed, including minimizing hemolysis during blood collection, preventing IS efflux during PBMC preparation, and determining the need for further purification of the PBMC fraction. Assessing and reducing nonspecific binding during separation of unbound IS are also necessary, especially for lipophilic CNIs/mTORi. Although TDM using PBMC or unbound plasma concentrations may not be feasible due to increased costs, plasma CNI/mTORi levels may be more easily integrated into routine TDM. However, no validated TDM targets currently exist, and published models to adjust blood CNI/mTORi concentrations for hematocrit or to predict PBMC, and total and unbound plasma IS concentrations have yet to be validated in terms of measured concentrations or prediction of clinical outcomes. CONCLUSIONS Even if CNI/mTORi measurements in novel matrices do not become routine, they may help refine pharmacokinetic-pharmacodynamic relationships and improve mathematical models for TDM using whole blood. Notably, there is evidence to support measuring unbound MPA in patients with severe renal dysfunction, hypoalbuminemia, and hyperbilirubinemia, with some proposed TDM targets.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia; and
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Mao J, Zeng F, Qin W, Hu M, Xu L, Cheng F, Zhong M, Zhang Y. A joint population pharmacokinetic model to assess the high variability of whole-blood and intracellular tacrolimus in early adult renal transplant recipients. Int Immunopharmacol 2024; 137:112535. [PMID: 38908078 DOI: 10.1016/j.intimp.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Tacrolimus (TAC) has high pharmacokinetic (PK) variability during the early transplantation period. The relationships between whole-blood and intracellular TAC concentrations and clinical outcomes remain controversial. This study identifies the factors affecting the PK variability of TAC and characterizes the relationships between whole-blood and intracellular TAC concentrations. Data regarding whole-blood TAC concentrations of 1,787 samples from 215 renal transplant recipients (<90 days postoperative) across two centers and intracellular TAC concentrations (648 samples) digitized from previous studies were analyzed using nonlinear mixed-effects modeling. The effects of potential covariates were screened, and the distribution of whole-blood to intracellular TAC concentration ratios (RWB:IC) was estimated. The final model was evaluated using bootstrap, goodness of fit, and prediction-corrected visual predictive checks. The optimal dosing regimens and target ranges for each type of immune cell subsets were determined using Monte Carlo simulations. A two-compartment model adequately described the data, and the estimated mean TAC CL/F was 23.6 L·h-1 (relative standard error: 11.5 %). The hematocrit level, CYP3A5*3 carrier status, co-administration with Wuzhi capsules, and tapering prednisolone dose may contribute to the high variability of TAC PK variability during the early post-transplant period. The estimated RWB:IC of all TAC concentrations in peripheral blood mononuclear cells (PBMCs) was 4940, and inter-center variability of PBMCs was observed. The simulated TAC target range in PBMCs was 20.2-85.9 pg·million cells-1. Inter-center variability in intracellular concentrations should be taken into account in further analyses. TAC dosage adjustments can be guided based on PK/PD variability and simulated intracellular concentrations.
Collapse
Affiliation(s)
- Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China.
| |
Collapse
|
4
|
Wang YP, Lu XL, Shao K, Shi HQ, Zhou PJ, Chen B. Improving prediction of tacrolimus concentration using a combination of population pharmacokinetic modeling and machine learning in chinese renal transplant recipients. Front Pharmacol 2024; 15:1389271. [PMID: 38783953 PMCID: PMC11111944 DOI: 10.3389/fphar.2024.1389271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Aims The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients. Methods Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group. Results The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance. Conclusion The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Yu-Ping Wang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Ling Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Kun Shao
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hao-Qiang Shi
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Pei-Jun Zhou
- Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Couette A, Tron C, Golbin L, Franck B, Houssel-Debry P, Frouget T, Morin MP, Brenier H, Rayar M, Verdier MC, Vigneau C, Chemouny J, Lemaitre F. Area under the curve of tacrolimus using microsampling devices: towards precision medicine in solid organ transplantation? Eur J Clin Pharmacol 2023; 79:1549-1556. [PMID: 37725122 DOI: 10.1007/s00228-023-03566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Therapeutic drug monitoring of tacrolimus using trough concentration (Cmin) is mandatory to ensure drug efficacy and safety in solid organ transplantation. However, Cmin is just a proxy for the area under the curve of drug concentrations (AUC) which is the best pharmacokinetic parameter for exposure evaluation. Some studies suggest that patients may present discrepancies between these two parameters. AUC is now easily available through mini-invasive microsampling approach. The aim of this study is to evaluate the relationship between AUC and Cmin in patients benefiting from a complete pharmacokinetic profile using a microsampling approach. METHODS Fifty-one transplant recipients benefited from a complete pharmacokinetic profile using a microsampling approach, and their 24-h AUC were calculated using the trapezoidal method. The correlation with Cmin was then explored. In parallel, we estimated AUC using the sole Cmin and regression equations according to the post-transplantation days and the galenic form. RESULTS Weak correlations were found between 24-h AUC observed and the corresponding Cmin (R2 = 0.60) and between AUC observed and expected using the sole Cmin (R2 = 0.62). Therapeutic drug monitoring of tacrolimus using Cmin leads to over- or under-estimate drug exposure in 40.3% of patients. CONCLUSION Tacrolimus Cmin appears to be an imperfect reflection of drug exposure. Evaluating AUC using a microsampling approach offers a mini-invasive strategy to monitor tacrolimus treatment in transplant recipients.
Collapse
Affiliation(s)
- Aurélien Couette
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
| | - Camille Tron
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
- FHU SUPORT, Rennes, F-35000, France
| | - Léonard Golbin
- FHU SUPORT, Rennes, F-35000, France
- Department of Nephrology, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Bénédicte Franck
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
- FHU SUPORT, Rennes, F-35000, France
| | - Pauline Houssel-Debry
- Liver Disease Unit, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Thierry Frouget
- Department of Nephrology, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Marie-Pascale Morin
- Department of Nephrology, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Henri Brenier
- Department of Nephrology, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Michel Rayar
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
- Liver Disease Unit, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Marie-Clémence Verdier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
- FHU SUPORT, Rennes, F-35000, France
| | - Cécile Vigneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- FHU SUPORT, Rennes, F-35000, France
- Department of Nephrology, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France
| | - Jonathan Chemouny
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
- FHU SUPORT, Rennes, F-35000, France
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR S 1085, F-35000 Rennes, France.
- INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France.
- FHU SUPORT, Rennes, F-35000, France.
- Pharmacology Department, Hôpital Pontchaillou, CHU de Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex, France.
| |
Collapse
|
6
|
Concha J, Sangüesa E, Saez-Benito AM, Aznar I, Berenguer N, Saez-Benito L, Ribate MP, García CB. Importance of Pharmacogenetics and Drug-Drug Interactions in a Kidney Transplanted Patient. Life (Basel) 2023; 13:1627. [PMID: 37629484 PMCID: PMC10455535 DOI: 10.3390/life13081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tacrolimus (TAC) is a narrow-therapeutic-range immunosuppressant drug used after organ transplantation. A therapeutic failure is possible if drug levels are not within the therapeutic range after the first year of treatment. Pharmacogenetic variants and drug-drug interactions (DDIs) are involved. We describe a patient case of a young man (16 years old) with a renal transplant receiving therapy including TAC, mycophenolic acid (MFA), prednisone and omeprazole for prophylaxis of gastric and duodenal ulceration. The patient showed great fluctuation in TAC blood concentration/oral dose ratio, as well as pharmacotherapy adverse effects (AEs) and frequent diarrhea episodes. Additionally, decreased kidney function was found. A pharmacotherapeutic follow-up, including pharmacogenetic analysis, was carried out. The selection of the genes studied was based on the previous literature (CYP3A5, CYP3A4, POR, ABCB1, PXR and CYP2C19). A drug interaction with omeprazole was reported and the nephrologist switched to rabeprazole. A lower TAC concentration/dose ratio was achieved, and the patient's condition improved. In addition, the TTT haplotype of ATP Binding Cassette Subfamily B member 1 (ABCB1) and Pregnane X Receptor (PXR) gene variants seemed to affect TAC pharmacotherapy in the studied patient and could explain the occurrence of long-term adverse effects post-transplantation. These findings suggest that polymorphic variants and co-treatments must be considered in order to achieve the effectiveness of the immunosuppressive therapy with TAC, especially when polymedicated patients are involved. Moreover, pharmacogenetics could influence the drug concentration at the cellular level, both in lymphocyte and in renal tissue, and should be explored in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Pilar Ribate
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, E-50830 Zaragoza, Spain; (J.C.); (E.S.); (A.M.S.-B.); (I.A.); (N.B.); (L.S.-B.); (C.B.G.)
| | | |
Collapse
|
7
|
Fontova P, van Merendonk LN, Vidal-Alabró A, Rigo-Bonnin R, Cerezo G, van Oevelen S, Bestard O, Melilli E, Montero N, Coloma A, Manonelles A, Torras J, Cruzado JM, Grinyó JM, Colom H, Lloberas N. The Effect of Intracellular Tacrolimus Exposure on Calcineurin Inhibition in Immediate- and Extended-Release Tacrolimus Formulations. Pharmaceutics 2023; 15:pharmaceutics15051481. [PMID: 37242723 DOI: 10.3390/pharmaceutics15051481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Despite intensive monitoring of whole blood tacrolimus concentrations, acute rejection after kidney transplantation occurs during tacrolimus therapy. Intracellular tacrolimus concentrations could better reflect exposure at the site of action and its pharmacodynamics (PD). Intracellular pharmacokinetic (PK) profile following different tacrolimus formulations (immediate-release (TAC-IR) and extended-release (TAC-LCP)) remains unclear. Therefore, the aim was to study intracellular tacrolimus PK of TAC-IR and TAC-LCP and its correlation with whole blood (WhB) PK and PD. A post-hoc analysis of a prospective, open-label, crossover investigator-driven clinical trial (NCT02961608) was performed. Intracellular and WhB tacrolimus 24 h time-concentration curves were measured in 23 stable kidney transplant recipients. PD analysis was evaluated measuring calcineurin activity (CNA) and simultaneous intracellular PK/PD modelling analysis was conducted. Higher dose-adjusted pre-dose intracellular concentrations (C0 and C24) and total exposure (AUC0-24) values were found for TAC-LCP than TAC-IR. Lower intracellular peak concentration (Cmax) was found after TAC-LCP. Correlations between C0, C24 and AUC0-24 were observed within both formulations. Intracellular kinetics seems to be limited by WhB disposition, in turn, limited by tacrolimus release/absorption processes from both formulations. The faster intracellular elimination after TAC-IR was translated into a more rapid recovery of CNA. An Emax model relating % inhibition and intracellular concentrations, including both formulations, showed an IC50, a concentration to achieve 50% CNA inhibition, of 43.9 pg/million cells.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Gema Cerezo
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | | | - Oriol Bestard
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Joan Torras
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Josep M Grinyó
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Nephrology Laboratory, Department of Clinical Sciences, Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| |
Collapse
|
8
|
Maruyama Y, Maejima Y, Hirabayashi K, Morokawa H, Okura E, Saito S, Nakazawa Y. Factors Affecting Day-to-Day Variations in Tacrolimus Concentration among Children and Young Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2023; 29:270.e1-270.e8. [PMID: 36682473 DOI: 10.1016/j.jtct.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Tacrolimus is widely used as prophylaxis for graft-versus-host disease (GVHD) in allogeneic stem cell transplantation (allo-HSCT). It has a narrow therapeutic index range; high tacrolimus concentrations are associated with toxicity, whereas low concentrations are associated with an increased risk of GVHD. Although dose adjustments based on therapeutic drug monitoring are performed, unexpected large variations in tacrolimus concentration are sometimes encountered. The available evidence suggests that the factors affecting tacrolimus concentration are not fully understood. This study was aimed primarily at investigating the factors affecting day-to-day variations in tacrolimus concentration in children and young adults who received continuous tacrolimus infusion after allo-HSCT. The secondary objective was to identify the factors causing large variations (>20%) in tacrolimus concentrations. This retrospective cohort study comprised 123 consecutive pediatric and young adult patients (age <25 years) who received continuous i.v. tacrolimus infusion after allo-HSCT at Shinshu University Hospital, Matsumoto, Japan, between January 2009 and December 2021. To compare day-to-day variations in tacrolimus concentration without consideration of the tacrolimus dose, 2 consecutive days when the tacrolimus dose was not changed were selected from between the first post-allo-HSCT day of a tacrolimus concentration >7 ng/mL and day 28 post-allo-HSCT. Subsequently, information for the subsequent 24 hours was collected along with the tacrolimus concentrations and hematocrit values. Tacrolimus concentration was determined using whole blood samples. Tacrolimus concentrations were significantly higher in patients who received red blood cell concentrate (RCC) transfusions (P < .0001) and methotrexate (P = .0162), patients with persistent fever (P = .0056), and patients with a decline in fever (P = .0003). In contrast, tacrolimus concentrations were significantly lower in patients who received platelet concentrate (PC) transfusions (P < .0001), who redeveloped fever (P = .0261), and who had a replaced tacrolimus administration route set (P = .0008). Variations in tacrolimus concentration were significantly correlated with variations in hematocrit (r = .556; P < .0001). Body weight (P < .0001), RCC transfusion (P < .0001), methotrexate use (P = .0333), persistent fever (P = .0150), and decline in fever (P = .0073) were associated with a sharp increase in tacrolimus concentration. In contrast, body weight (P < .0001), PC transfusion (P = .0025), and replacement of the tacrolimus administration route set (P = .0025) were associated with a sharp decrease in tacrolimus concentration. RCC and PC transfusions, fever, methotrexate administration, and replacement of the tacrolimus administration route set were independent factors affecting day-to-day variations in tacrolimus concentration. In addition to these factors, low body weight was a risk factor for both sharp increases and decreases in tacrolimus concentration. These findings suggest the need for better control of tacrolimus concentration using whole blood samples.
Collapse
Affiliation(s)
- Yuta Maruyama
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuya Maejima
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koichi Hirabayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Hirokazu Morokawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eri Okura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
9
|
Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, Stocker SL. Adaptation of a population pharmacokinetic model to inform tacrolimus therapy in heart transplant recipients. Br J Clin Pharmacol 2023; 89:1162-1175. [PMID: 36239542 PMCID: PMC10952588 DOI: 10.1111/bcp.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Existing tacrolimus population pharmacokinetic models are unsuitable for guiding tacrolimus dosing in heart transplant recipients. This study aimed to develop and evaluate a population pharmacokinetic model for tacrolimus in heart transplant recipients that considers the tacrolimus-azole antifungal interaction. METHODS Data from heart transplant recipients (n = 87) administered the oral immediate-release formulation of tacrolimus (Prograf®) were collected. Routine drug monitoring data, principally trough concentrations, were used for model building (n = 1099). A published tacrolimus model was used to inform the estimation of Ka , V2 /F, Q/F and V3 /F. The effect of concomitant azole antifungal use on tacrolimus CL/F was quantified. Fat-free mass was implemented as a covariate on CL/F, V2 /F, V3 /F and Q/F on an allometry scale. Subsequently, stepwise covariate modelling was performed. Significant covariates influencing tacrolimus CL/F were included in the final model. Robustness of the final model was confirmed using prediction-corrected visual predictive check (pcVPC). The final model was externally evaluated for prediction of tacrolimus concentrations of the fourth dosing occasion (n = 87) from one to three prior dosing occasions. RESULTS Concomitant azole antifungal therapy reduced tacrolimus CL/F by 80%. Haematocrit (∆OFV = -44, P < .001) was included in the final model. The pcVPC of the final model displayed good model adequacy. One recent drug concentration is sufficient for the model to guide tacrolimus dosing. CONCLUSION A population pharmacokinetic model that adequately describes tacrolimus pharmacokinetics in heart transplant recipients, considering the tacrolimus-azole antifungal interaction was developed. Prospective evaluation is required to assess its clinical utility to improve patient outcomes.
Collapse
Affiliation(s)
- Ranita Kirubakaran
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Clinical Pharmacology and ToxicologySt. Vincent's HospitalSydneyNew South WalesAustralia
- Department of PharmacyHospital Seberang JayaPenangMalaysia
| | - David W. Uster
- Department of Clinical Pharmacy, Institute of PharmacyUniversity of HamburgHamburgGermany
| | - Stefanie Hennig
- Certara Inc.PrincetonNew JerseyUSA
- School of Clinical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jane E. Carland
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Clinical Pharmacology and ToxicologySt. Vincent's HospitalSydneyNew South WalesAustralia
| | - Richard O. Day
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Clinical Pharmacology and ToxicologySt. Vincent's HospitalSydneyNew South WalesAustralia
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of PharmacyUniversity of HamburgHamburgGermany
| | - Sophie L. Stocker
- School of Clinical Medicine, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Department of Clinical Pharmacology and ToxicologySt. Vincent's HospitalSydneyNew South WalesAustralia
- School of Pharmacy, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Akshintala VS, Husain SZ, Brenner TA, Singh A, Singh VK, Khashab MA, Sperna Weiland CJ, van Geenen EJM, Bush N, Barakat M, Srivastava A, Kochhar R, Talukdar R, Rodge G, Wu CCH, Lakhtakia S, Sinha SK, Goenka MK, Reddy DN. Rectal INdomethacin, oral TacROlimus, or their combination for the prevention of post-ERCP pancreatitis (INTRO Trial): Protocol for a randomized, controlled, double-blinded trial. Pancreatology 2022; 22:887-893. [PMID: 35872074 DOI: 10.1016/j.pan.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/12/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis remains the most common and morbid complication of endoscopic retrograde cholangiopancreatography (ERCP). The use of rectal indomethacin and pancreatic duct stenting has been shown to reduce the incidence and severity of post-ERCP pancreatitis (PEP), but these interventions have limitations. Recent clinical and translational evidence suggests a role for calcineurin inhibitors in the prevention of pancreatitis, with multiple retrospective case series showing a reduction in PEP rates in tacrolimus users. METHODS The INTRO trial is a multicenter, international, randomized, double-blinded, controlled trial. A total of 4,874 patients undergoing ERCP will be randomized to receive either oral tacrolimus (5 mg) or oral placebo 1-2 h before ERCP, and followed for 30 days post-procedure. Blood and pancreatic aspirate samples will also be collected in a subset of patients to quantify tacrolimus levels. The primary outcome of the study is the incidence of PEP. Secondary endpoints include the severity of PEP, ERCP-related complications, adverse drug events, length of hospital stay, cost-effectiveness, and the pharmacokinetics, pharmacodynamics, and pharmacogenomics of tacrolimus immune modulation in the pancreas. CONCLUSIONS The INTRO trial will assess the role of calcineurin inhibitors in PEP prophylaxis and develop a foundation for the clinical optimization of this therapeutic strategy from a pharmacologic and economic standpoint. With this clinical trial, we hope to demonstrate a novel approach to PEP prophylaxis using a widely available and well-characterized class of drugs. TRIAL REGISTRATION NCT05252754, registered on February 14, 2022.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Todd A Brenner
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Anmol Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Vikesh K Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Erwin J M van Geenen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nikhil Bush
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Monique Barakat
- Division of Pediatric Gastroenterology, Lucile Packard Children's Hospital Stanford, Palo Alto, CA, USA
| | - Ananta Srivastava
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Gajanan Rodge
- Department of Gastroenterology, Apollo Multispecialty Hospitals, Kolkata, India
| | - Clement C H Wu
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Sundeep Lakhtakia
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Saroj K Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Mahesh K Goenka
- Department of Gastroenterology, Apollo Multispecialty Hospitals, Kolkata, India
| | - D Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
11
|
Brunet M, Pastor-Anglada M. Insights into the Pharmacogenetics of Tacrolimus Pharmacokinetics and Pharmacodynamics. Pharmaceutics 2022; 14:1755. [PMID: 36145503 PMCID: PMC9503558 DOI: 10.3390/pharmaceutics14091755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The influence of pharmacogenetics in tacrolimus pharmacokinetics and pharmacodynamics needs further investigation, considering its potential in assisting clinicians to predict the optimal starting dosage and the need for a personalized adjustment of the dose, as well as to identify patients at a high risk of rejection, drug-related adverse effects, or poor outcomes. In the past decade, new pharmacokinetic strategies have been developed to improve personalized tacrolimus treatment. Several studies have shown that patients with tacrolimus doses C0/D < 1 ng/mL/mg may demonstrate a greater incidence of drug-related adverse events and infections. In addition, C0 tacrolimus intrapatient variability (IPV) has been identified as a potential biomarker to predict poor outcomes related to drug over- and under-exposure. With regard to tacrolimus pharmacodynamics, inconsistent genotype-phenotype relationships have been identified. The aim of this review is to provide a concise summary of currently available data regarding the influence of pharmacogenetics on the clinical outcome of patients with high intrapatient variability and/or a fast metabolizer phenotype. Moreover, the role of membrane transporters in the interindividual variability of responses to tacrolimus is critically discussed from a transporter scientist’s perspective. Indeed, the relationship between transporter polymorphisms and intracellular tacrolimus concentrations will help to elucidate the interplay between the biological mechanisms underlying genetic variations impacting drug concentrations and clinical effects.
Collapse
Affiliation(s)
- Mercè Brunet
- Farmacologia i Toxicologia, Servei de Bioquímica i Genètica Molecular, Centre de Diagnòstic Biomèdic. Hospital Clínic de Barcelona, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pí i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Marçal Pastor-Anglada
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Molecular Pharmacology and Experimental Therapeutics (MPET), Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
12
|
Drug transporters are implicated in the diffusion of tacrolimus into the T lymphocyte in kidney and liver transplant recipients: Genetic, mRNA, protein expression, and functionality. Drug Metab Pharmacokinet 2022; 47:100473. [DOI: 10.1016/j.dmpk.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
|
13
|
Franken LG, Francke MI, Andrews LM, van Schaik RHN, Li Y, de Wit LEA, Baan CC, Hesselink DA, de Winter BCM. A Population Pharmacokinetic Model of Whole-Blood and Intracellular Tacrolimus in Kidney Transplant Recipients. Eur J Drug Metab Pharmacokinet 2022; 47:523-535. [PMID: 35442010 PMCID: PMC9232416 DOI: 10.1007/s13318-022-00767-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The tacrolimus concentration within peripheral blood mononuclear cells may correlate better with clinical outcomes after transplantation compared to concentrations measured in whole blood. However, intracellular tacrolimus measurements are not easily implemented in clinical practice. The prediction of intracellular concentrations based on whole-blood concentrations would be a solution for this. Therefore, the aim of this study was to describe the relationship between intracellular and whole-blood tacrolimus concentrations in a population pharmacokinetic (popPK) model. METHODS Pharmacokinetic analysis was performed using non-linear mixed effects modelling software (NONMEM). The final model was evaluated using goodness-of-fit plots, visual predictive checks, and a bootstrap analysis. RESULTS A total of 590 tacrolimus concentrations from 184 kidney transplant recipients were included in the study. All tacrolimus concentrations were measured in the first three months after transplantation. The intracellular tacrolimus concentrations (n = 184) were best described with an effect compartment. The distribution into the effect compartment was described by the steady-state whole-blood to intracellular ratio (RWB:IC) and the intracellular distribution rate constant between the whole-blood and intracellular compartments. Lean body weight was negatively correlated [delta objective function value (ΔOFV) -8.395] and haematocrit was positively correlated (ΔOFV = - 6.752) with RWB:IC, and both lean body weight and haematocrit were included in the final model. CONCLUSION We were able to accurately describe intracellular tacrolimus concentrations using whole-blood concentrations, lean body weight, and haematocrit values in a popPK model. This model may be used in the future to more accurately predict clinical outcomes after transplantation and to identify patients at risk for under- and overexposure. Dutch National Trial Registry number NTR2226.
Collapse
Affiliation(s)
- Linda G Franken
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. .,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands. .,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yi Li
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Erasmus MC Transplant Institute, University Medical Center, Rotterdam, The Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Rotterdam Clinical Pharmacometrics Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Pharmacogene Variants Associated with Liver Transplant in a Twelve-Year Clinical Follow-Up. Pharmaceutics 2022; 14:pharmaceutics14020354. [PMID: 35214086 PMCID: PMC8878556 DOI: 10.3390/pharmaceutics14020354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Some gene polymorphisms have been previously associated individually with tacrolimus efficacy and toxicity, but no long-term study to determine the role of pharmacogene variants in the clinical evolution of liver-transplanted patients has been addressed so far. In the present work, we analyzed the relation between highly-evidenced genetic polymorphisms located in relevant pharmacogenes and the risk of suffering premature death and other comorbidities such as cancer, diabetes mellitus, arterial hypertension, graft rejection, infections and nephrotoxicities in a cohort of 87 patients (8 were excluded due to early loss of follow-up) transplanted at Hospital La Fe in Valencia (Spain) during a 12-year follow-up. Employing a logistic regression model with false discovery rate penalization and Kaplan–Meier analyses, we observed significant association between survival rates and metabolizer genes. In this sense, our results show an association between MTHFR gene variants in donor rs1801133 (HR: 7.90; p-value: 0.032) and recipient rs1801131 (HR: 7.34; p-value: 0.036) and the group of patients who died during the follow-up period, supporting the interest of confirming these results with larger patient cohorts. In addition, donor polymorphisms in UGT1A9 metabolizer gene rs6714486 (OR: 0.13; p-value: 0.032) were associated with a lower risk of suffering from de novo cancer. Genetic variants in CYP2B6 metabolizer gene rs2279343 demonstrated an association with a risk of infection. Other variants in different locations of SLCO1A2, ABCC2 and ABCB1 transporter genes were associated with a lower risk of suffering from type 2 diabetes mellitus, chronic and acute nephrotoxicities and arterial hypertension. Results suggest that pharmacogenetics-derived information may be an important support for personalized drug prescription, clinical follow-up and the evolution of liver-transplanted patients.
Collapse
|
15
|
Francke MI, Andrews LM, Lan Le H, van de Velde D, Dieterich M, Udomkarnjananun S, Clahsen-van Groningen MC, Baan CC, van Gelder T, de Winter BCM, Hesselink DA. Monitoring intracellular tacrolimus concentrations and its relationship with rejection in the early phase after renal transplantation. Clin Biochem 2021; 101:9-15. [PMID: 34890583 DOI: 10.1016/j.clinbiochem.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION After kidney transplantation, rejection and drug-related toxicity occur despite tacrolimus whole-blood pre-dose concentrations ([Tac]blood) being within the target range. The tacrolimus concentration within peripheral blood mononuclear cells ([Tac]cells) might correlate better with clinical outcomes. The aim of this study was to investigate the correlation between [Tac]blood and [Tac]cells, the evolution of [Tac]cells and the [Tac]cells/[Tac]blood ratio, and to assess the relationship between tacrolimus concentrations and the occurrence of rejection. METHODS In this prospective study, samples for the measurement of [Tac]blood and [Tac]cells were collected on days 3 and 10 after kidney transplantation, and on the morning of a for-cause kidney transplant biopsy. Biopsies were reviewed according to the Banff 2019 update. RESULTS Eighty-three [Tac]cells samples were measured of 44 kidney transplant recipients. The correlation between [Tac]cells and [Tac]blood was poor (Pearson's r = 0.56 (day 3); r = 0.20 (day 10)). Both the dose-corrected [Tac]cells and the [Tac]cells/[Tac]blood ratio were not significantly different between days 3 and 10, and the median inter-occasion variability of the dose-corrected [Tac]cells and the [Tac]cells/[Tac]blood ratio were 19.4% and 23.4%, respectively (n = 24). Neither [Tac]cells, [Tac]blood, nor the [Tac]cells/[Tac]blood ratio were significantly different between patients with biopsy-proven acute rejection (n = 4) and patients with acute tubular necrosis (n = 4) or a cancelled biopsy (n = 9; p > 0.05). CONCLUSION Tacrolimus exposure and distribution appeared stable in the early phase after transplantation. [Tac]cells was not significantly associated with the occurrence of rejection. A possible explanation for these results might be related to the low number of patients included in this study and also due to the fact that PBMCs are not a specific enough matrix to monitor tacrolimus concentrations.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands.
| | - Louise M Andrews
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Meander Medical Center, Amersfoort, the Netherlands
| | - Hoang Lan Le
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Daan van de Velde
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marjolein Dieterich
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Suwasin Udomkarnjananun
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands; Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Marian C Clahsen-van Groningen
- Erasmus MC Transplant Institute, the Netherlands; Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda C M de Winter
- Erasmus MC Transplant Institute, the Netherlands; Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, the Netherlands; Erasmus MC Transplant Institute, the Netherlands
| |
Collapse
|
16
|
De Nicolò A, Pinon M, Palermiti A, Nonnato A, Manca A, Mula J, Catalano S, Tandoi F, Romagnoli R, D'Avolio A, Calvo PL. Monitoring Tacrolimus Concentrations in Whole Blood and Peripheral Blood Mononuclear Cells: Inter- and Intra-Patient Variability in a Cohort of Pediatric Patients. Front Pharmacol 2021; 12:750433. [PMID: 34803692 PMCID: PMC8602893 DOI: 10.3389/fphar.2021.750433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tacrolimus (TAC) is a first-choice immunosuppressant for solid organ transplantation, characterized by high potential for drug-drug interactions, significant inter- and intra-patient variability, and narrow therapeutic index. Therapeutic drug monitoring (TDM) of TAC concentrations in whole blood (WB) is capable of reducing the incidence of adverse events. Since TAC acts within lymphocytes, its monitoring in peripheral blood mononuclear cells (PBMC) may represent a valid future alternative for TDM. Nevertheless, TAC intracellular concentrations and their variability are poorly described, particularly in the pediatric context. Therefore, our aim was describing TAC concentrations in WB and PBMC and their variability in a cohort of pediatric patients undergoing constant immunosuppressive maintenance therapy, after liver transplantation. TAC intra-PBMCs quantification was performed through a validated UHPLC–MS/MS assay over a period of 2–3 months. There were 27 patients included in this study. No significant TAC changes in intracellular concentrations were observed (p = 0.710), with a median percent change of −0.1% (IQR −22.4%–+46.9%) between timings: this intra-individual variability was similar to the one in WB, −2.9% (IQR −29.4–+42.1; p = 0.902). Among different patients, TAC weight-adjusted dose and age appeared to be significant predictors of TAC concentrations in WB and PBMC. Intra-individual seasonal variation of TAC concentrations in WB, but not in PBMC, have been observed. These data show that the intra-individual variability in TAC intracellular exposure is comparable to the one observed in WB. This opens the way for further studies aiming at the identification of therapeutic ranges for TAC intra-PBMC concentrations.
Collapse
Affiliation(s)
- Amedeo De Nicolò
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonello Nonnato
- Clinical Biochemistry Unit, Department of Diagnostic Laboratory, A.O.U. Città della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Catalano
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Francesco Tandoi
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery, Liver Transplant Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
17
|
Sallustio BC. Monitoring Intra-cellular Tacrolimus Concentrations in Solid Organ Transplantation: Use of Peripheral Blood Mononuclear Cells and Graft Biopsy Tissue. Front Pharmacol 2021; 12:733285. [PMID: 34764868 PMCID: PMC8576179 DOI: 10.3389/fphar.2021.733285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Tacrolimus is an essential immunosuppressant for the prevention of rejection in solid organ transplantation. Its low therapeutic index and high pharmacokinetic variability necessitates therapeutic drug monitoring (TDM) to individualise dose. However, rejection and toxicity still occur in transplant recipients with blood tacrolimus trough concentrations (C0) within the target ranges. Peripheral blood mononuclear cells (PBMC) have been investigated as surrogates for tacrolimus's site of action (lymphocytes) and measuring allograft tacrolimus concentrations has also been explored for predicting rejection or nephrotoxicity. There are relatively weak correlations between blood and PBMC or graft tacrolimus concentrations. Haematocrit is the only consistent significant (albeit weak) determinant of tacrolimus distribution between blood and PBMC in both liver and renal transplant recipients. In contrast, the role of ABCB1 pharmacogenetics is contradictory. With respect to distribution into allograft tissue, studies report no, or poor, correlations between blood and graft tacrolimus concentrations. Two studies observed no effect of donor ABCB1 or CYP3A5 pharmacogenetics on the relationship between blood and renal graft tacrolimus concentrations and only one group has reported an association between donor ABCB1 polymorphisms and hepatic graft tacrolimus concentrations. Several studies describe significant correlations between in vivo PBMC tacrolimus concentrations and ex vivo T-cell activation or calcineurin activity. Older studies provide evidence of a strong predictive value of PBMC C0 and allograft tacrolimus C0 (but not blood C0) with respect to rejection in liver transplant recipients administered tacrolimus with/without a steroid. However, these results have not been independently replicated in liver or other transplants using current triple maintenance immunosuppression. Only one study has reported a possible association between renal graft tacrolimus concentrations and acute tacrolimus nephrotoxicity. Thus, well-designed and powered prospective clinical studies are still required to determine whether measuring tacrolimus PBMC or graft concentrations offers a significant benefit compared to current TDM.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia.,Discipline of Pharmacology, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Mutalik S. Towards next-generation personalization of tacrolimus treatment: a review on advanced diagnostic and therapeutic approaches. Pharmacogenomics 2021; 22:1151-1175. [PMID: 34719935 DOI: 10.2217/pgs-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The benefit of personalized medicine is that it allows the customization of drug therapy - maximizing efficacy while avoiding side effects. Genetic polymorphisms are one of the major contributors to interindividual variability. Currently, the only gold standard for applying personalized medicine is dose titration. Because of technological advancements, converting genotypic data into an optimum dose has become easier than in earlier years. However, for many medications, determining a personalized dose may be difficult, leading to a trial-and-error method. On the other hand, the technologically oriented pharmaceutical industry has a plethora of smart drug delivery methods that are underutilized in customized medicine. This article elaborates the genetic polymorphisms of tacrolimus as case study, and extensively covers the diagnostic and therapeutic technologies which aid in the delivery of personalized tacrolimus treatment for better clinical outcomes, thereby providing a new strategy for implementing personalized medicine.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
19
|
Li C, Lu J, Zhou S, Wei Y, Lv C, Liu T, Wu Y, Wu D, Qi J, Cai R. Influential Factors and Efficacy Analysis of Tacrolimus Concentration After Allogeneic Hematopoietic Stem Cell Transplantation in Children with β-Thalassemia Major. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1221-1237. [PMID: 34594128 PMCID: PMC8478485 DOI: 10.2147/pgpm.s325103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Purpose To analyze factors influencing tacrolimus (TAC) trough concentration (C0) in β-thalassemia major (β-TM) pediatric patients after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and to investigate the effects of genotype polymorphism and drug-drug interactions on TAC trough concentration in children with β-TM. Furthermore, to analyze the correlation between TAC C0 and efficacy and adverse reactions. Patients and Methods Prospectively collection of demographic information and details of combined treatment of patients with β-TM receiving HSCT, and genotypes of CYP3A4, CYP3A5, and ABCB1 (rs1045642, rs1128503, rs2032582) were obtained for each patient. Univariate analysis and multiple linear regression analysis were used to investigate influencing factors on TAC C0. The impact of different genotypes and the co-administration of azole antifungal drugs on β-TM patients receiving TAC were evaluated, together with the correlation between acute graft-versus-host disease (aGVHD), infection, and liver injury of TAC C0. Results A total of 46 patients with 587 concentration data were included. The multiple linear regression results showed that the patient's sex, weight, postoperative time, hemoglobin, platelet count, serum cystatin C, and combined voriconazole were independent influencing factors of the infusion trough concentration/daily dose, C0/Div. Age, body surface area, postoperative time, co-administration of voriconazole, and CYP3A4*18B are independent influencing factors of C0/Dpo. Group comparisons showed that voriconazole can affect TAC C0 administered intravenously (IV) and orally in β-TM pediatric patients, while patient genotype can affect TAC C0 during oral administration. TAC C0 does not correlate with aGVHD or liver injury, but infection may be associated with TAC C0. Conclusion The concentration of TAC should be closely monitored when co-administered with voriconazole. It is worth considering that the influence of genotype on the trough concentration of oral TAC and individualized drug administration warrant investigation. Finally, this study indicated that C0 is not suitable as an indicator of the efficacy of TAC.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Jiejiu Lu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Chunle Lv
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Dongni Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Jianying Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| | - Rongda Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, People's Republic of China
| |
Collapse
|
20
|
Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology. Best Pract Res Clin Gastroenterol 2021; 54-55:101756. [PMID: 34874840 DOI: 10.1016/j.bpg.2021.101756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
Immunosuppressive drugs have been key to the success of liver transplantation and are essential components of the treatment of inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH). For many but not all immunosuppressants, therapeutic drug monitoring (TDM) is recommended to guide therapy. In this article, the rationale and evidence for TDM of tacrolimus, mycophenolic acid, the mammalian target of rapamycin inhibitors, and azathioprine in liver transplantation, IBD, and AIH is reviewed. New developments, including algorithm-based/computer-assisted immunosuppressant dosing, measurement of immunosuppressants in alternative matrices for whole blood, and pharmacodynamic monitoring of these agents is discussed. It is expected that these novel techniques will be incorporate into the standard TDM in the next few years.
Collapse
|
21
|
Fontova P, Colom H, Rigo-Bonnin R, Bestard O, Vidal-Alabró A, van Merendonk LN, Cerezo G, Polo C, Montero N, Melilli E, Manonelles A, Meneghini M, Coloma A, Cruzado JM, Torras J, Grinyó JM, Lloberas N. Sustained Inhibition of Calcineurin Activity With a Melt-Dose Once-daily Tacrolimus Formulation in Renal Transplant Recipients. Clin Pharmacol Ther 2021; 110:238-247. [PMID: 33626199 DOI: 10.1002/cpt.2220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
Tacrolimus (Tac) is the cornerstone calcineurin inhibitor in transplantation. Extended-release Meltdose formulation (Tac-LCP) offers better bioavailability compared with immediate-release formulation (Tac-IR). We postulated that the less fluctuating pharmacokinetic (PK) profile of Tac-LCP might maintain a sustained inhibition of calcineurin activity (CNA) between dose intervals. Higher concentrations (peak plasma concentration (Cmax )) after Tac-IR may not result in a more potent CNA inhibition due to a capacity-limited effect. This study was aimed at evaluating the pharmacodynamic (PD)/PK profiles of Tac-IR compared with Tac-LCP. An open-label, prospective, nonrandomized, investigator-driven study was conducted. Twenty-five kidney transplant recipients receiving Tac-IR were switched to Tac-LCP. Before and 28 days after conversion, intensive CNA-PD and PK sampling were conducted using ultra-high-performance liquid chromatography-tandem accurate mass spectrometry. PD nonlinear mixed effects model was performed in Phoenix-WinNonlin. Statistically significant higher Cmax (P < 0.001) after Tac-IR did not result in lower CNA as compared with after Tac-LCP (P = 0.860). Tac-LCP showed a statistically more maintained CNA inhibition between dose intervals (area under the effect-time curve from 0 to 24 hours (AUE0-24h )) compared with Tac-IR, in which CNA returned to predose levels after 4 hours of drug intake (373.8 vs. 290.5 pmol RII·h/min·mg prot, Tac-LCP vs. Tac-IR; P = 0.039). No correlation was achieved between any PD and PK parameters in any formulations. Moreover, Tac concentration to elicit a 50% of the maximum response (half-maximal inhibitory concentration) was 9.24 ng/mL. The higher Cmax after Tac-IR does not result in an additional CNA inhibition compared with Tac-LCP attributable to a capacity-limited effect. Tac-LCP may represent an improvement of the PD of Tac due to the more sustained CNA inhibition during dose intervals.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Gema Cerezo
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Carolina Polo
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Maria Meneghini
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep M Grinyó
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona, Spain.,Nephrology Laboratory, Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Fontova P, Colom H, Rigo-Bonnin R, van Merendonk LN, Vidal-Alabró A, Montero N, Melilli E, Meneghini M, Manonelles A, Cruzado JM, Torras J, Grinyó JM, Bestard O, Lloberas N. Influence of the Circadian Timing System on Tacrolimus Pharmacokinetics and Pharmacodynamics After Kidney Transplantation. Front Pharmacol 2021; 12:636048. [PMID: 33815118 PMCID: PMC8010682 DOI: 10.3389/fphar.2021.636048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/05/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction: Tacrolimus is the backbone immunosuppressant after solid organ transplantation. Tacrolimus has a narrow therapeutic window with large intra- and inter-patient pharmacokinetic variability leading to frequent over- and under-immunosuppression. While routine therapeutic drug monitoring (TDM) remains the standard of care, tacrolimus pharmacokinetic variability may be influenced by circadian rhythms. Our aim was to analyze tacrolimus pharmacokinetic/pharmacodynamic profiles on circadian rhythms comparing morning and night doses of a twice-daily tacrolimus formulation. Methods: This is a post-hoc analysis from a clinical trial to study the area under curve (AUC) and the area under effect (AUE) profiles of calcineurin inhibition after tacrolimus administration in twenty-five renal transplant patients. Over a period of 24 h, an intensive sampling (0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 12.5, 13, 13.5, 14, 15, 20, and 24 h) was carried out. Whole blood and intracellular tacrolimus concentrations and calcineurin activity were measured by UHPLC-MS/MS. Results: Whole blood and intracellular AUC12-24 h and Cmax achieved after tacrolimus night dose was significantly lower than after morning dose administration (AUC0-12 h) (p < 0.001 for both compartments). AUE0-12 h and AUE12-24 h were not statistically different after morning and night doses. Total tacrolimus daily exposure (AUC0-24 h), in whole blood and intracellular compartments, was over-estimated when assessed by doubling the morning AUC0-12 h data. Conclusion: The lower whole blood and intracellular tacrolimus concentrations after night dose might be influenced by a distinct circadian clock. This significantly lower tacrolimus exposure after night dose was not translated into a significant reduction of the pharmacodynamic effect. Our study may provide conceptual bases for better understanding the TDM of twice-daily tacrolimus formulation.
Collapse
Affiliation(s)
- Pere Fontova
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Raül Rigo-Bonnin
- Biochemistry Department, Bellvitge University Hospital, Universitari de Bellvitge, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain
| | - Lisanne N van Merendonk
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Vidal-Alabró
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Edoardo Melilli
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Meneghini
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep M Cruzado
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Josep Maria Grinyó
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Nephrology and Transplantation, Institut d'Investigació Biomédica de Bellvitge, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Francke MI, Hesselink DA, Li Y, Koch BCP, de Wit LEA, van Schaik RHN, Yang L, Baan CC, van Gelder T, de Winter BCM. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. Br J Clin Pharmacol 2020; 87:1918-1929. [PMID: 33025649 PMCID: PMC8056738 DOI: 10.1111/bcp.14585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023] Open
Abstract
Aims Tacrolimus is a critical dose drug and to avoid under‐ and overexposure, therapeutic drug monitoring is standard practice. However, rejection and drug‐related toxicity occur despite whole‐blood tacrolimus pre‐dose concentrations ([Tac]blood) being on target. Monitoring tacrolimus concentrations at the target site (within peripheral blood mononuclear cells; [Tac]cells) may better correlate with drug‐efficacy. The aim of this study was to (1) investigate the relationship between [Tac]blood and [Tac]cells, (2) identify factors affecting the tacrolimus distribution in cells and whole‐blood, and (3) study the relationship between [Tac]cells and clinical outcomes after kidney transplantation. Methods A total of 175 renal transplant recipients were prospectively followed. [Tac]blood and [Tac]cells were determined at Months 3, 6 and 12 post‐transplantation. Patients were genotyped for ABCB1 1199G>A and 3435C>T, CYP3A4 15389C>T, and CYP3A5 6986G>A. Data on rejection and tacrolimus‐related nephrotoxicity and post‐transplant diabetes mellitus were collected. Results Correlations between [Tac]blood and [Tac]cells were moderate to poor (Spearman's r = 0.31; r = 0.41; r = 0.61 at Months 3, 6 and 12, respectively). The [Tac]cells/[Tac]blood ratio was stable over time in most patients (median intra‐patient variability 39.0%; range 3.5%–173.2%). Age, albumin and haematocrit correlated with the [Tac]cells/[Tac]blood ratio. CYP3A5 and CYP3A4 genotype combined affected both dose‐corrected [Tac]blood and [Tac]cells. ABCB1 was not significantly related to tacrolimus distribution. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes. Conclusions The correlation between [Tac]blood and [Tac]cells is poor. Age, albumin and haematocrit correlate with the [Tac]cells/[Tac]blood ratio, whereas genetic variation in ABCB1, CYP3A4 and CYP3A5 do not. Neither [Tac]blood nor [Tac]cells correlated with clinical outcomes.
Collapse
Affiliation(s)
- Marith I Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Yi Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lucia E A de Wit
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lin Yang
- Department of Pharmacy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Rotterdam Transplant Group, Rotterdam, Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Brenda C M de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
24
|
Zhu J, Pasternak AL, Crona DJ. The future of research into genetics and the precision dosing of tacrolimus: what do we need to know? Pharmacogenomics 2020; 21:1061-1064. [PMID: 32896220 DOI: 10.2217/pgs-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jing Zhu
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Pharmacy, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel J Crona
- Division of Pharmacotherapy & Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.,UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA.,Department of Pharmacy, UNC Hospitals & Clinics, Chapel Hill, NC 27514, USA
| |
Collapse
|
25
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
26
|
Leino AD, Pai MP. Maintenance Immunosuppression in Solid Organ Transplantation: Integrating Novel Pharmacodynamic Biomarkers to Inform Calcineurin Inhibitor Dose Selection. Clin Pharmacokinet 2020; 59:1317-1334. [PMID: 32720300 DOI: 10.1007/s40262-020-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcineurin inhibitors, the primary immunosuppressive therapy used to prevent alloreactivity of transplanted organs, have a narrow therapeutic index. Currently, treatment is individualized based on clinical assessment of the risk of rejection or toxicity guided by trough concentration monitoring. Advances in immune monitoring have identified potential markers that may have value in understanding calcineurin inhibitor pharmacodynamics. Integration of these markers has the potential to complement therapeutic drug monitoring. Existing pharmacokinetic-pharmacodynamic (PK-PD) data is largely limited to correlation between the biomarker and trough concentrations at single time points. Immune related gene expression currently has the most evidence supporting PK-PD integration. Novel biomarker-based approaches to pharmacodynamic monitoring including development of enhanced PK-PD models are proposed to realize the full clinical benefit.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Francke MI, de Winter BC, Elens L, Lloberas N, Hesselink DA. The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1776107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marith I. Francke
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Brenda C.M. de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laure Elens
- Louvain Drug Research Institute, Université Catholique De Louvain, Louvain, Belgium
| | - Nuria Lloberas
- Department of Nephrology, IDIBELL, Hospital Universitari Di Bellvitge, University of Barcelona, Barcelona, Spain
| | - Dennis A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Rotterdam Transplant Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|