1
|
Haam CE, Choi S, Byeon S, Oh EY, Choi SK, Lee YH. Alteration of Piezo1 signaling in type 2 diabetic mice: focus on endothelium and BK Ca channel. Pflugers Arch 2024; 476:1479-1492. [PMID: 38955832 PMCID: PMC11381481 DOI: 10.1007/s00424-024-02983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Piezo1 mechanosensitive ion channel plays a important role in vascular physiology and disease. This study aimed to elucidate the altered signaling elicited by Piezo1 activation in the arteries of type 2 diabetes. Ten- to 12-week-old male C57BL/6 (control) and type 2 diabetic mice (db-/db-) were used. The second-order mesenteric arteries (~ 150 μm) were used for isometric tension experiments. Western blot analysis and immunofluorescence staining were performed to observe protein expression. Piezo1 was significantly decreased in mesenteric arteries of type 2 diabetic mice compared to control mice, as analyzed by western blot and immunofluorescence staining. Piezo1 agonist, Yoda1, concentration-dependently induced relaxation of mesenteric arteries in both groups. Interestingly, the relaxation response was significantly greater in control mice than in db-/db- mice. The removal of endothelium reduced relaxation responses induced by Yoda1, which was greater in control mice than db-/db- mice. Furthermore, the relaxation response was reduced by pre-treatment with various types of K+ channel blockers in endothelium-intact arteries in control mice. In endothelium-denuded arteries, pre-incubation with charybdotoxin, an Ca2+-activated K+ channel (BKCa channel) blocker, significantly attenuated Yoda1-induced relaxation in db-/db- mice, while there was no effect in control mice. Co-immunofluorescence staining showed co-localization of Piezo1 and BKCa channel was more pronounced in db-/db- mice than in control mice. These results indicate that the vascular responses induced by Piezo1 activation are different in the mesenteric resistance arteries in type 2 diabetic mice.
Collapse
Affiliation(s)
- Chae Eun Haam
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sooyeon Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Seonhee Byeon
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Eun Yi Oh
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea
| | - Soo-Kyoung Choi
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Young-Ho Lee
- Department of Physiology, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
2
|
Wang Y, Liu Y, Fang J, Xing X, Wang H, Shi X, Liu X, Niu T, Liu K. Small-molecule agonist AdipoRon alleviates diabetic retinopathy through the AdipoR1/AMPK/EGR4 pathway. J Transl Med 2024; 22:2. [PMID: 38166990 PMCID: PMC10759471 DOI: 10.1186/s12967-023-04783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS This provides a new target for the early treatment of DR.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
- Department of Ophthalmology, Shanghai Renji Hospital, School of Medicine, Shanghai, 200127, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200127, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, 200080, China.
| |
Collapse
|
3
|
Abdalla MMI, Mohanraj J, Somanath SD. Adiponectin as a therapeutic target for diabetic foot ulcer. World J Diabetes 2023; 14:758-782. [PMID: 37383591 PMCID: PMC10294063 DOI: 10.4239/wjd.v14.i6.758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
The global burden of diabetic foot ulcers (DFUs) is a significant public health concern, affecting millions of people worldwide. These wounds cause considerable suffering and have a high economic cost. Therefore, there is a need for effective strategies to prevent and treat DFUs. One promising therapeutic approach is the use of adiponectin, a hormone primarily produced and secreted by adipose tissue. Adiponectin has demonstrated anti-inflammatory and anti-atherogenic properties, and researchers have suggested its potential therapeutic applications in the treatment of DFUs. Studies have indicated that adiponectin can inhibit the production of pro-inflammatory cytokines, increase the production of vascular endothelial growth factor, a key mediator of angiogenesis, and inhibit the activation of the intrinsic apoptotic pathway. Additionally, adiponectin has been found to possess antioxidant properties and impact glucose metabolism, the immune system, extracellular matrix remodeling, and nerve function. The objective of this review is to summarize the current state of research on the potential role of adiponectin in the treatment of DFUs and to identify areas where further research is needed in order to fully understand the effects of adiponectin on DFUs and to establish its safety and efficacy as a treatment for DFUs in the clinical setting. This will provide a deeper understanding of the underlying mechanisms of DFUs that can aid in the development of new and more effective treatment strategies.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Physiology, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jaiprakash Mohanraj
- Department of Biochemistry, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sushela Devi Somanath
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
4
|
Wu X, Zhu D, Shi L, Tu Q, Yu Y, Chen J. AdipoRon accelerates bone repair of calvarial defect in diet-induced obesity mice. Heliyon 2023; 9:e13975. [PMID: 36873496 PMCID: PMC9982622 DOI: 10.1016/j.heliyon.2023.e13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Objectives To investigate the role of AdipoRon in bone wound healing of calvaria critical-sized defects (CSD) in diet-induced obesity (DIO) mice. Materials and methods After establishing the calvaria CSD in normal-chow (NC), DIO and Adiponectin knockout (APNKO) mice, AdipoRon or vehicle was orally gavaged for 3 weeks. The bone defects were analyzed by micro-CT and H&E staining. The expression of osteogenesis-related factor in the defect area, and the chemotactic gradient of SDF-1 between bone marrow and bone defect area were further analyzed. Results AdipoRon downregulated body weight and alleviated fasting blood glucose level of DIO mice after treatment with AdipoRon in 14 and 21 days. Newly formed bone was significantly increased in the defect area of DIO and APNKO mice after treatment with AdipoRon compared with vehicle treatment. No significant difference was shown in NC mice. Furthermore, compared with NC mice, a significant decrease of BV/TV%, Tb.N value and formed bone percentage were shown in DIO and APNKO mice. The treatment with AdipoRon could reverse of decreased value and increase the newly formed bone in those mice. AdipoRon promoted col-1α expression in wound sites in DIO and APNKO mice. AdipoRon nearly quadrupled the chemotactic gradient of SDF-1 by decreasing SDF-1 expression in bone marrow and increasing it in the bone defect area in APNKO and DIO treated mice. Conclusion AdipoRon alleviates the obesity status in DIO mice with calvarial defect and increase new bone formation in calvarial defects in DIO and APNKO mice by modulating chemotactic gradient of SDF-1.
Collapse
Affiliation(s)
- Xingwen Wu
- Dept. of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Danting Zhu
- Department of Stomatology, Dental Center of Jing-An District, Shanghai, PR China
| | - Le Shi
- Department of Stomatology, Dental Center of Jing-An District, Shanghai, PR China
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Youcheng Yu
- Dept. of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| |
Collapse
|
5
|
Samaha MM, Helal MG, El-Sherbiny M, Said E, Salem HA. Diacerein versus adipoRon as adiponectin modulators in experimentally-induced end-stage type 2 diabetes mellitus in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103806. [PMID: 34974166 DOI: 10.1016/j.etap.2021.103806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The objective of the present study is to evaluate and compare the possible anti-diabetic effects of adipoRon and diacerein in type 2 diabetes mellitus (T2DM) rats. T2DM is marked by impaired oxidative, inflammatory and metabolic signaling. Indeed, T2DM progression is associated with elevated HbA1C%, low adiponectin and insulin concentration. Moreover, in this study epididymal adipose tissue and soleus muscle MDA contents significantly escalated, while serum TAC and epididymal adipose Nrf2 significantly declined. Nevertheless, serum TNF-α, epididymal NLRP3, NF-κB, PPARγ and CD68 expression rose significantly with a parallel significant reduction in serum IL-10 and soleus muscle expression of IRS1. Both adipoRon and diacerein significantly improved adiponectin and insulin secretion with augmentation of anti-oxidant defenses and diminution of oxidative burden, with obvious anti-inflammatory consequences (p < 0.05). Thus, adipoRon and diacerein positively modulated adiponectin expression with down-regulation of NF-κB/NLRP3/PPARγ expression with subsequent improvement in glycemic control, inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, New Mansoura University, 7723730 New Mansoura, Egypt.
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Tarkhnishvili A, Koentges C, Pfeil K, Gollmer J, Byrne NJ, Vosko I, Lueg J, Vogelbacher L, Birkle S, Tang S, Bon-Nawul Mwinyella T, Hoffmann MM, Odening KE, Michel NA, Wolf D, Stachon P, Hilgendorf I, Wallner M, Ljubojevic-Holzer S, von Lewinski D, Rainer P, Sedej S, Sourij H, Bode C, Zirlik A, Bugger H. Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice. J Lipid Atheroscler 2022; 11:161-177. [PMID: 35656151 PMCID: PMC9133777 DOI: 10.12997/jla.2022.11.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.
Collapse
Affiliation(s)
| | - Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nikole J Byrne
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ivan Vosko
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lueg
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Laura Vogelbacher
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Stephan Birkle
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Sibai Tang
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center – University of Freiburg, Germany
| | - Katja E Odening
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Nathaly Anto Michel
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Wallner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Lee Y, Nakano A, Nakamura S, Sakai K, Tanaka M, Sanematsu K, Shigemura N, Matsui T. In vitro and in silico characterization of adiponectin-receptor agonist dipeptides. NPJ Sci Food 2021; 5:29. [PMID: 34772952 PMCID: PMC8589863 DOI: 10.1038/s41538-021-00114-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to develop a dipeptide showing an adiponectin receptor 1 (AdipoR1) agonistic effect in skeletal muscle L6 myotubes. Based on the structure of the AdipoR1 agonist, AdipoRon, 15 synthetic dipeptides were targeted to promote glucose uptake in L6 myotubes. Tyr-Pro showed a significant increase in glucose uptake among the dipeptides, while other dipeptides, including Pro-Tyr, failed to exert this effect. Tyr-Pro induces glucose transporter 4 (Glut4) expression in the plasma membrane, along with adenosine monophosphate-activated protein kinase (AMPK) activation. In AdipoR1-knocked down cells, the promotion by Tyr-Pro was ameliorated, indicating that Tyr-Pro may directly interact with AdipoR1 as an agonist, followed by the activation of AMPK/Glut4 translocation in L6 myotubes. Molecular dynamics simulations revealed that a Tyr-Pro molecule was stably positioned in the two potential binding pockets (sites 1 and 2) of the seven-transmembrane receptor, AdipoR1, anchored in a virtual 1-palmitoyl-2-oleoyl-phosphatidylcholine membrane. In conclusion, we demonstrated the antidiabetic function of the Tyr-Pro dipeptide as a possible AdipoR1 agonist.
Collapse
Affiliation(s)
- Yuna Lee
- grid.177174.30000 0001 2242 4849Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Akihiro Nakano
- grid.177174.30000 0001 2242 4849Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Saya Nakamura
- grid.177174.30000 0001 2242 4849Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Kenta Sakai
- grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Mitsuru Tanaka
- grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Keisuke Sanematsu
- grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan ,grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Noriatsu Shigemura
- grid.177174.30000 0001 2242 4849Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan ,grid.177174.30000 0001 2242 4849Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Toshiro Matsui
- Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
de Oliveira dos Santos AR, de Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, Detregiachi CRP, Buchaim DV, Buchaim RL, Tofano RJ, Mendes CG, Tofano VAC, dos Santos Haber JF. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int J Mol Sci 2021; 22:2639. [PMID: 33807959 PMCID: PMC7961600 DOI: 10.3390/ijms22052639] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.
Collapse
Affiliation(s)
- Ana Rita de Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília 17500-000, São Paulo, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla 9-75, Bauru 17040, São Paulo, Brazil;
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| |
Collapse
|
9
|
Vasodilatory Effect of Phellinus linteus Extract in Rat Mesenteric Arteries. Molecules 2020; 25:molecules25143160. [PMID: 32664327 PMCID: PMC7397296 DOI: 10.3390/molecules25143160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
Phellinus linteus is a well-known medicinal mushroom that is widely used in Asian countries. In several experimental models, Phellinus linteus extracts were reported to have various biological effects, including anti-inflammatory, anti-cancer, hepatoprotective, anti-diabetic, neuroprotective, and anti-angiogenic activity. In the present study, several bioactive compounds, including palmitic acid ethyl ester and linoleic acid, were identified in Phellinus linteus. The intermediate-conductance calcium-activated potassium channel (IKCa) plays an important role in the regulation of the vascular smooth muscle cells’ (VSMCs) contraction and relaxation. The activation of the IKCa channel causes the hyperpolarization and relaxation of VSMCs. To examine whether Phellinus linteus extract causes vasodilation in the mesenteric arteries of rats, we measured the isometric tension using a wire myograph. After the arteries were pre-contracted with U46619 (a thromboxane analogue, 1 µM), Phellinus linteus extract was administered. The Phellinus linteus extract induced vasodilation in a dose-dependent manner, which was independent of the endothelium. To further investigate the mechanism, we used the non-selective K+ channel blocker tetraethylammonium (TEA). TEA significantly abolished Phellinus linteus extract-induced vasodilation. Thus, we tested three different types of K+ channel blockers: iberiotoxin (BKca channel blocker), apamin (SKca channel blocker), and charybdotoxin (IKca channel blocker). Charybdotoxin significantly inhibited Phellinus linteus extract-induced relaxation, while there was no effect from apamin and iberiotoxin. Membrane potential was measured using the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC4(3)) in the primary isolated vascular smooth muscle cells (VSMCs). We found that the Phellinus linteus extract induced hyperpolarization of VSMCs, which is associated with a reduced phosphorylation level of 20 KDa myosin light chain (MLC20).
Collapse
|