1
|
Hamada Y, Akasaka K, Otsudo T, Sawada Y, Hattori H, Kikuchi Y, Hall T. Golfers' Performance Is Improved More by Combining Foam Rolling and Dynamic Stretch to the Lead Hip Than Practice Golf Swinging. J Strength Cond Res 2024; 38:e391-e397. [PMID: 38662947 DOI: 10.1519/jsc.0000000000004786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Hamada, Y, Akasaka, K, Otsudo, T, Sawada, Y, Hattori, H, Kikuchi, Y, and Hall, T. Golfers' performance is improved more by combining foam rolling and dynamic stretch to the lead hip than practice golf swinging. J Strength Cond Res 38(7): e391-e397, 2024-Warming up is considered effective in improving performance and preventing injury. Despite this, there have been few studies investigating warm-up programs in golf and whether specific factors contribute to improved performance. The purpose of this study was to examine the immediate effects of combined foam rolling and dynamic stretch (FR + DS) to the lead hip on golf swing performance, hip range of motion (ROM), and muscle strength in amateur golfers using a randomized crossover design. The study sample comprised 22 men (mean ± SD ; age, 32.6 ± 8.5 years, body mass index (BMI), 23.4 ± 2.7 kg·m -2 ). Subjects were assigned to receive either FR + DS or repetitive golf swing practice (SW) before crossing over to the other intervention for another day. Measurements included golf swing performance (ball speed, club head speed, flight distance ["carry"], spin rate, and launch angle), hip internal rotation (IR), and external rotation (ER) ROM, as well as hip IR and ER muscle strength. Comparisons between groups were made before and after each intervention. For golf swing performance, FR + DS improved "carry" significantly more than SW ( p < 0.05). No significant differences in golf swing performance other than "carry" were found. In addition, IR ROM and IR muscle strength of the lead hip were significantly increased in the FR + DS group ( p < 0.05). FR + DS has effects on improving lead hip IR ROM and IR muscle strength, which may facilitate golfers' swing and "carry." FR + DS shows promise as a warm-up method for amateur golfers who want to improve golf performance.
Collapse
Affiliation(s)
- Yuji Hamada
- Saitama Medical University Graduate School of Medicine, Moroyama, Japan
- Department of Rehabilitation, Kawagoe Clinic, Saitama Medical University, Kawagoe, Japan
| | - Kiyokazu Akasaka
- Saitama Medical University Graduate School of Medicine, Moroyama, Japan
- School of Physical Therapy, Saitama Medical University, Moroyama, Japan
| | - Takahiro Otsudo
- Major of Physical Therapy, Department of Rehabilitation, Tokyo University of Technology, Kamata, Japan; and
| | - Yutaka Sawada
- School of Physical Therapy, Saitama Medical University, Moroyama, Japan
| | - Hiroshi Hattori
- Saitama Medical University Graduate School of Medicine, Moroyama, Japan
- School of Physical Therapy, Saitama Medical University, Moroyama, Japan
| | - Yuto Kikuchi
- Saitama Medical University Graduate School of Medicine, Moroyama, Japan
- Department of Rehabilitation, Kawagoe Clinic, Saitama Medical University, Kawagoe, Japan
| | - Toby Hall
- Curtin School of Allied Health, Curtin University, Perth, Australia
| |
Collapse
|
2
|
Abd El-Kafy EM, Alayat MS, Alwhaibi RM, Basuodan RM. Spiral strapping for improving upper extremity motor functions in individuals with stroke: A randomized controlled trial. Prosthet Orthot Int 2024:00006479-990000000-00208. [PMID: 38170804 DOI: 10.1097/pxr.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The rehabilitation process for the upper extremities of individuals with stroke requires therapists to use splints for supportive and corrective purposes. The aim of this study was to assess the effectiveness of spiral strapping in inhibiting spasticity and improving the upper extremity motor functions of individuals with chronic stroke. METHODS Forty Saudi individuals aged 50-60 years with chronic stroke participated in this study. Their degrees of spasticity according to the Modified Ashworth Scale ranged across grades 1, 1+, and 2. Participants were randomly assigned to experimental and control groups. Participants in both groups received 1 h of conventional physical therapy for 3 d/wk to improve the motor functions of their upper extremities. In addition, participants in the experimental group wore an upper-limb spiral strapping with a hand splint 10 h/d for 6 d/wk. The treatment program for both groups was delivered for 4 weeks. Changes in the scores of Action Research Arm Test for elbow joint spasticity, active range of motion of the shoulder, elbow, and forearm joints, and hand grip strength were evaluated before and after treatment in both groups. RESULTS Significant improvements in all measured variables after treatment were reported in both groups, except for elbow joint spasticity in the control group. The experimental group showed significant post-treatment improvement in the scores for all measured variables compared with the control group. CONCLUSIONS Spiral strapping was beneficial in inhibiting mild degrees of spasticity and improving the motor functions of the upper extremities of stroke patients.
Collapse
Affiliation(s)
- Ehab Mohamed Abd El-Kafy
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pediatric Physical Therapy, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Mohamad Salaheldien Alayat
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Basic Sciences, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Reem M Alwhaibi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reem M Basuodan
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Choi JM, Cho EY, Lee BH. Effects of Dynamic Stretching Combined with Manual Therapy on Pain, ROM, Function, and Quality of Life of Adhesive Capsulitis. Healthcare (Basel) 2023; 12:45. [PMID: 38200951 PMCID: PMC10779350 DOI: 10.3390/healthcare12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
This study was conducted to evaluate the effects of dynamic stretching combined with manual therapy on pain, range of motion, function, and quality of life in patients with adhesive capsulitis. The participants were randomly divided into two groups: the dynamic stretching combined with manual therapy (DSMT) group (n = 17) and the static stretching combined with manual therapy (SSMT) group (n = 17). Both groups received manual therapy for 10 min and two sessions per week for 4 weeks. The DSMT group also performed additional dynamic stretching for 20 min per session, two sessions per week for 4 weeks. The SSMT group practiced additional static stretching for 20 min per session, two sessions per week for 4 weeks. The pain, ROM, function, and quality of life were measured and evaluated before and after treatment. There were significant improvements in the outcomes of pain, flexion and abduction of shoulder ROM, Shoulder Pain and Disability Index (SPADI), and the physical component score and mental component score of the Short Form-36 (SF-36) in both groups. Additionally, the external and internal rotation of the shoulder ROM and the SF-36 general health factor increased significantly more in the A group (DSMT group) compared to the B group (SSMT). In conclusion, dynamic stretching plus manual therapy offers the same results as static stretching plus manual therapy, but with additional improvement in internal and external rotation.
Collapse
Affiliation(s)
- Jeong-Min Choi
- Graduate School of Physical Therapy, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Eun-Young Cho
- Institutional Research Center, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Byoung-Hee Lee
- Department of Physical Therapy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
4
|
Babault N, Hitier M, Paizis C, Vieira DCL. Exploring Acute Changes in Hamstring EMG after Warm-up and Stretching Using a Multifractal Analysis. Med Sci Sports Exerc 2023; 55:1023-1033. [PMID: 36719665 DOI: 10.1249/mss.0000000000003128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION This study aimed to apply multifractal detrended fluctuation analysis (MFDFA) to surface EMG to detect neuromuscular changes after realistic warm-up procedures that was followed by various stretching exercises. METHODS Sixteen volunteers conducted two experimental sessions. Testing included two maximal voluntary contractions before, after a standardized warm-up, and after a stretching exercise (static or neurodynamic nerve gliding technique). EMG was registered on biceps femoris and semitendinosus muscles. EMG was analyzed using different parameters obtained from the singularity Hurst exponent function and multifractal power spectrum (both obtained from the multifractal detrended fluctuation analysis). RESULTS The Hurst exponent, α maximum, and peak value of the multifractal spectrum significantly decreased after warm-up as compared with baseline for both biceps femoris ( P = 0.003, P = 0.006, and P = 0.003, respectively) and semitendinosus ( P = 0.006, P = 0.013 and P = 0.01, respectively) muscles. No further alteration was obtained after static or neurodynamic nerve gliding stretching as compared with post-warm-up ( P = 1.0). No significant difference was obtained for Hurst exponent range, width, and asymmetry of the multifractal spectrum ( P > 0.05). CONCLUSIONS From the present results, EMG depicted multifractal features sensitive to detect neuromuscular changes after a warm-up procedure. An increase in multiscale complexity is revealed after warm-up without any further alteration after stretching. The multifractal spectrum depicted dominant small fluctuations that shifted toward slightly larger fluctuations that could be attributed to motor unit recruitment.
Collapse
|
5
|
A cognitive task, deep breathing, and static stretching reduce variability of motor evoked potentials during subsequent transcranial magnetic stimulation. Brain Res 2023; 1798:148151. [PMID: 36343727 PMCID: PMC9829447 DOI: 10.1016/j.brainres.2022.148151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Motor evoked potentials (MEPs) induced via transcranial magnetic stimulation (TMS) demonstrate trial-to-trial variability limiting detection and interpretation of changes in corticomotor excitability. This study examined whether performing a cognitive task, voluntary breathing, or static stretching before TMS could reduce MEP variability. METHODS 20 healthy young adults performed no-task, a cognitive task (Stroop test), deep breathing, and static stretching before TMS in a randomized order. MEPs were collected in the non-dominant tibialis anterior muscle at 130% active motor threshold. Variability of MEP amplitude was quantified as coefficient of variation (CV). RESULTS MEP CV was greater after no-task (25.4 ± 7.0) than after cognitive task (23.3 ± 7.2; p < 0.05), deep breathing (20.1 ± 6.3; p < 0.001), and static stretching (20.9 ± 6.0; p = 0.004). MEP CV was greater after cognitive task than after deep breathing (p = 0.007) and static stretching (p = 0.01). There was no effect of condition on MEP amplitude. CONCLUSIONS Performing brief cognitive, voluntary breathing, and stretching tasks before TMS can reduce MEP variability with no effect on MEP amplitude in the tibialis anterior of healthy, young adults. Similar tasks could be incorporated into research and clinical settings to improve detection of changes, normative data, and clinical predictions.
Collapse
|
6
|
Usefulness of Surface Electromyography Complexity Analyses to Assess the Effects of Warm-Up and Stretching during Maximal and Sub-Maximal Hamstring Contractions: A Cross-Over, Randomized, Single-Blind Trial. BIOLOGY 2022; 11:biology11091337. [PMID: 36138816 PMCID: PMC9495372 DOI: 10.3390/biology11091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to apply different complexity-based methods to surface electromyography (EMG) in order to detect neuromuscular changes after realistic warm-up procedures that included stretching exercises. Sixteen volunteers conducted two experimental sessions. They were tested before, after a standardized warm-up, and after a stretching exercise (static or neuromuscular nerve gliding technique). Tests included measurements of the knee flexion torque and EMG of biceps femoris (BF) and semitendinosus (ST) muscles. EMG was analyzed using the root mean square (RMS), sample entropy (SampEn), percentage of recurrence and determinism following a recurrence quantification analysis (%Rec and %Det) and a scaling parameter from a detrended fluctuation analysis. Torque was significantly greater after warm-up as compared to baseline and after stretching. RMS was not affected by the experimental procedure. In contrast, SampEn was significantly greater after warm-up and stretching as compared to baseline values. %Rec was not modified but %Det for BF muscle was significantly greater after stretching as compared to baseline. The a scaling parameter was significantly lower after warm-up as compared to baseline for ST muscle. From the present results, complexity-based methods applied to the EMG give additional information than linear-based methods. They appeared sensitive to detect EMG complexity increases following warm-up.
Collapse
|
7
|
Inoue T, Nagano K. Differential effects of dynamic and ballistic stretching on contralateral lower limb flexibility. ISOKINET EXERC SCI 2022. [DOI: 10.3233/ies-220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Dynamic stretching (DS) and ballistic stretching (BS) are similar stretching methods, but the differences between them are unclear. OBJECTIVE: To examine the immediate effects of unilateral hamstring DS and BS on straight leg raise (SLR), knee flexion range of motion (KF-ROM), and KF and knee extension maximal isokinetic peak torque (KF-MIPT and KE-MIPT) of the bilateral limbs. METHODS: Twelve healthy adult men performed four sets of 2 min each of non-stretching, DS, or BS of the right lower extremity. Bilateral SLR, KF-ROM, KF-MIPT, and KE-MIPT were measured pre- and post-intervention; a three-way (intervention × limb × time) repeated-measures analysis of variance (ANOVA) was used. RESULTS: The SLR of the stretched limb (p< 0.01) was higher with DS than that pre-intervention. SLR (p< 0.01) and KF-ROM (p< 0.05) of the stretched limb and SLR (p< 0.05) and KF-ROM (p< 0.05) of the contralateral limb were higher with BS than those pre-intervention. There was no significant main effect or interaction between KF-MIPT and KE-MIPT. CONCLUSION: DS and BS had slightly different effects on ROM, and neither affected muscle strength; thus, combining the techniques during warm-up might be helpful.
Collapse
Affiliation(s)
- Taisei Inoue
- Division of Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Katsuhito Nagano
- Department of Physical Therapy, Faculty of Health Sciences, Japan University of Health Sciences, Saitama, Japan
| |
Collapse
|
8
|
Canepa P, Papaxanthis C, Bisio A, Biggio M, Paizis C, Faelli E, Avanzino L, Bove M. Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience 2021; 475:73-82. [PMID: 34425159 DOI: 10.1016/j.neuroscience.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Specific neural mechanisms operate at corticospinal levels during eccentric and concentric contractions. Here, we investigated the difference in corticospinal excitability (CSE) when preparing these two types of contraction. In this study we enrolled 16 healthy participants. They were asked to perform an instructed-delay reaction time (RT) task involving a concentric or an eccentric contraction of the right first dorsal interosseus muscle, as a response to a proprioceptive cue (Go signal) presented 1 s after a warning signal. We tested CSE at different time points ranging from 300 ms before up to 40 ms after a Go signal. CSE increased 300-150 ms before the Go signal for both contractions. Interestingly, significant changes in CSE in the time interval around the Go signal (from -150 ms to +40 ms) were only revealed in eccentric contraction. We observed a significant decrease in excitability immediately before the Go cue (Pre_50) and a significant increase 40 ms after it (Post_40) with respect to the MEPs recorded at Pre_150. Finally, CSE in eccentric contraction was lower before the Go cue (Pre_50) and greater after it (Post_40) compared to the concentric contraction. A similar result was also found in NoMov paradigm, used to disentangle the effects induced by movement preparation from those induced by the movement preparation linked to the proprioceptive cue. We could conclude that different neural mechanisms observed during concentric and eccentric contractions are mirrored with a different time-specific modulation of CSE in the preparatory phase to the movement.
Collapse
Affiliation(s)
- Patrizio Canepa
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France
| | - Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Christos Paizis
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Bourgogne Franche-Comté, Dijon, France; Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Faculty of Sport Sciences, Dijon, France
| | - Emanuela Faelli
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino-IRCCS, Genoa, Italy.
| |
Collapse
|
9
|
Abstract
Although several methods have been used to estimate exercise-induced changes in human neuronal networks, there are growing doubts about the methodologies used. This review describes a single motor unit-based method that minimizes the errors inherent in classical methods. With this method, it is now possible to identify human neuronal networks' changes due to exercise.
Collapse
Affiliation(s)
- Kemal S Türker
- Istanbul Gelisim University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
10
|
A Survey on Stretching Practices in Women and Men from Various Sports or Physical Activity Programs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18083928. [PMID: 33918033 PMCID: PMC8068839 DOI: 10.3390/ijerph18083928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Recommendations for prescribing stretching exercises are regularly updated. It appears that coaches progressively follow the published guidelines, but the real stretching practices of athletes are unknown. The present study aimed to investigate stretching practices in individuals from various sports or physical activity programs. A survey was completed online to determine some general aspects of stretching practices. The survey consisted of 32 multiple-choice or open-ended questions to illustrate the general practices of stretching, experiences and reasons for stretching. In total, 3546 questionnaires were analyzed (47.3% women and 52.7% men). Respondents practiced at the national/international level (25.2%), regional level (29.8%), or recreationally (44.9%). Most respondents (89.3%) used stretching for recovery (74.9%) or gains of flexibility (57.2%). Stretching was generally performed after training (72.4%). The respondents also indicated they performed stretching as a pre-exercise routine (for warm-up: 49.9%). Static stretching was primarily used (88.2%) but when applied for warm-up reasons, respondents mostly indicated performing dynamic stretching (86.2%). Only 37.1% of the respondents indicated being supervised. Finally, some gender and practice level differences were noticed. The present survey revealed that the stretching practices were only partly in agreement with recent evidence-based recommendations. The present survey also pointed out the need to improve the supervision of stretching exercises.
Collapse
|
11
|
Trajano GS, Blazevich AJ. Static Stretching Reduces Motoneuron Excitability: The Potential Role of Neuromodulation. Exerc Sport Sci Rev 2021; 49:126-132. [PMID: 33720914 PMCID: PMC7967995 DOI: 10.1249/jes.0000000000000243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Prolonged static muscle stretching transiently reduces maximal muscle force, and this force loss has a strong neural component. In this review, we discuss the evidence suggesting that stretching reduces the motoneuron's ability to amplify excitatory drive. We propose a hypothetical model in which stretching causes physiological relaxation, reducing the brainstem-derived neuromodulatory drive necessary to maximize motoneuron discharge rates.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
12
|
Behm DG, Alizadeh S, Drury B, Granacher U, Moran J. Non-local acute stretching effects on strength performance in healthy young adults. Eur J Appl Physiol 2021; 121:1517-1529. [PMID: 33715049 DOI: 10.1007/s00421-021-04657-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. OBJECTIVE The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. METHODS A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. RESULTS Unilateral stretching protocols from six studies involved 6.3 ± 2 repetitions of 36.3 ± 7.4 s with 19.3 ± 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 ± 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 ± 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. CONCLUSION The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's,, Newfoundland and Labrador, Canada
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Gloucester, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK
| |
Collapse
|
13
|
Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2021; 51:945-959. [PMID: 33459990 DOI: 10.1007/s40279-020-01422-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints. OBJECTIVE The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose-response relations. METHODS Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration. RESULTS The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching. CONCLUSION Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Hartpury, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
14
|
Vieira DCL, Opplert J, Babault N. Acute effects of dynamic stretching on neuromechanical properties: an interaction between stretching, contraction, and movement. Eur J Appl Physiol 2021; 121:957-967. [PMID: 33417034 DOI: 10.1007/s00421-020-04583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction. METHODS The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10 s after each experimental condition. RESULTS Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC. CONCLUSION These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
Collapse
Affiliation(s)
- Denis César Leite Vieira
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.,College of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Jules Opplert
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France
| | - Nicolas Babault
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.
| |
Collapse
|
15
|
Harmsen JF, Latella C, Mesquita R, Fasse A, Schumann M, Behringer M, Taylor J, Nosaka K. H-reflex and M-wave responses after voluntary and electrically evoked muscle cramping. Eur J Appl Physiol 2020; 121:659-672. [PMID: 33245422 DOI: 10.1007/s00421-020-04560-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite the widespread occurrence of muscle cramps, their underlying neurophysiological mechanisms remain unknown. To better understand the etiology of muscle cramps, this study investigated acute effects of muscle cramping induced by maximal voluntary isometric contractions (MVIC) and neuromuscular electrical stimulation (NMES) on the amplitude of Hoffmann reflexes (H-reflex) and compound muscle action potentials (M-wave). METHODS Healthy men (n = 14) and women (n = 3) participated in two identical sessions separated by 7 days. Calf muscle cramping was induced by performing MVIC of the plantar flexors in a prone position followed by 2.5-s NMES over the plantar flexors with increasing frequency and intensity. H-reflexes and M-waves evoked by tibial nerve stimulation in gastrocnemius medialis (GM) and soleus were recorded at baseline, and after MVIC-induced cramps and the NMES protocol. RESULTS Six participants cramped after MVIC, and H-reflex amplitude decreased in GM and soleus in Session 1 (- 33 ± 32%, - 34 ± 33%, p = 0.031) with a similar trend in Session 2 (5 cramped, p = 0.063), whereas the maximum M-wave was unchanged. After NMES, 11 (Session 1) and 9 (Session 2) participants cramped. H-reflex and M-wave recruitment curves shifted to the left in both sessions and muscles after NMES independent of cramping (p ≤ 0.001). CONCLUSION Changes in H-reflexes after a muscle cramp induced by MVIC and NMES were inconsistent. While MVIC-induced muscle cramps reduced H-reflex amplitude, muscle stretch to end cramping was a potential contributing factor. By contrast, NMES may potentiate H-reflexes and obscure cramp-related changes. Thus, the challenge for future studies is to separate the neural consequences of cramping from methodology-based effects.
Collapse
Affiliation(s)
- Jan-Frieder Harmsen
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Christopher Latella
- Center for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Neurophysiology Research Laboratory, Edith Cowan University, Joondalup, WA, Australia
| | - Ricardo Mesquita
- Center for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Michael Behringer
- Faculty of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Janet Taylor
- Center for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Neurophysiology Research Laboratory, Edith Cowan University, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Center for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
16
|
Mechanisms underlying performance impairments following prolonged static stretching without a comprehensive warm-up. Eur J Appl Physiol 2020; 121:67-94. [PMID: 33175242 DOI: 10.1007/s00421-020-04538-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023]
Abstract
Whereas a variety of pre-exercise activities have been incorporated as part of a "warm-up" prior to work, combat, and athletic activities for millennia, the inclusion of static stretching (SS) within a warm-up has lost favor in the last 25 years. Research emphasized the possibility of SS-induced impairments in subsequent performance following prolonged stretching without proper dynamic warm-up activities. Proposed mechanisms underlying stretch-induced deficits include both neural (i.e., decreased voluntary activation, persistent inward current effects on motoneuron excitability) and morphological (i.e., changes in the force-length relationship, decreased Ca2+ sensitivity, alterations in parallel elastic component) factors. Psychological influences such as a mental energy deficit and nocebo effects could also adversely affect performance. However, significant practical limitations exist within published studies, e.g., long-stretching durations, stretching exercises with little task specificity, lack of warm-up before/after stretching, testing performed immediately after stretch completion, and risk of investigator and participant bias. Recent research indicates that appropriate durations of static stretching performed within a full warm-up (i.e., aerobic activities before and task-specific dynamic stretching and intense physical activities after SS) have trivial effects on subsequent performance with some evidence of improved force output at longer muscle lengths. For conditions in which muscular force production is compromised by stretching, knowledge of the underlying mechanisms would aid development of mitigation strategies. However, these mechanisms are yet to be perfectly defined. More information is needed to better understand both the warm-up components and mechanisms that contribute to performance enhancements or impairments when SS is incorporated within a pre-activity warm-up.
Collapse
|
17
|
Trajano GS, Taylor JL, Orssatto LBR, McNulty CR, Blazevich AJ. Passive muscle stretching reduces estimates of persistent inward current strength in soleus motor units. J Exp Biol 2020; 223:jeb229922. [PMID: 32978317 DOI: 10.1242/jeb.229922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 08/25/2023]
Abstract
Prolonged (≥60 s) passive muscle stretching acutely reduces maximal force production at least partly through a suppression of efferent neural drive. The origin of this neural suppression has not been determined; however, some evidence suggests that reductions in the amplitude of persistent inward currents (PICs) in the motoneurons may be important. The aim of the present study was to determine whether acute passive (static) muscle stretching affects PIC strength in gastrocnemius medialis (GM) and soleus (SOL) motor units. We calculated the difference in instantaneous discharge rates at recruitment and de-recruitment (ΔF) for pairs of motor units in GM and SOL during triangular isometric plantar flexor contractions (20% maximum) both before and immediately after a 5 min control period and immediately after five 1 min passive plantar flexor stretches. After stretching, there was a significant reduction in SOL ΔF (-25.6%; 95% confidence interval, CI=-45.1% to -9.1%, P=0.002) but not GM ΔF These data suggest passive muscle stretching can reduce the intrinsic excitability, via PICs, of SOL motor units. These findings (1) suggest that PIC strength might be reduced after passive stretching, (2) are consistent with previously established post-stretch decreases in SOL but not GM EMG amplitude during contraction, and (3) indicate that reductions in PIC strength could underpin the stretch-induced force loss.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Janet L Taylor
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Craig R McNulty
- School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|