1
|
Graham MK, Xu B, Davis C, Meeker AK, Heaphy CM, Yegnasubramanian S, Dyer MA, Zeineldin M. The TERT Promoter is Polycomb-Repressed in Neuroblastoma Cells with Long Telomeres. CANCER RESEARCH COMMUNICATIONS 2024; 4:1533-1547. [PMID: 38837897 PMCID: PMC11188873 DOI: 10.1158/2767-9764.crc-22-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/04/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.
Collapse
Affiliation(s)
- Mindy K. Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christine Davis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K. Meeker
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher M. Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Hakobyan M, Binder H, Arakelyan A. Pan-cancer analysis of telomere maintenance mechanisms. J Biol Chem 2024; 300:107392. [PMID: 38763334 PMCID: PMC11225560 DOI: 10.1016/j.jbc.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Telomeres, protective caps at chromosome ends, maintain genomic stability and control cell lifespan. Dysregulated telomere maintenance mechanisms (TMMs) are cancer hallmarks, enabling unchecked cell proliferation. We conducted a pan-cancer evaluation of TMM using RNA sequencing data from The Cancer Genome Atlas for 33 different cancer types and analyzed the activities of telomerase-dependent (TEL) and alternative lengthening of telomeres (ALT) TMM pathways in detail. To further characterize the TMM profiles, we categorized the tumors based on their ALT and TEL TMM pathway activities into five major phenotypes: ALT high TEL low, ALT low TEL low, ALT middle TEL middle, ALT high TEL high, and ALT low TEL high. These phenotypes refer to variations in telomere maintenance strategies, shedding light on the heterogeneous nature of telomere regulation in cancer. Moreover, we investigated the clinical implications of TMM phenotypes by examining their associations with clinical characteristics and patient outcomes. Specific TMM profiles were linked to specific survival patterns, emphasizing the potential of TMM profiling as a prognostic indicator and aiding in personalized cancer treatment strategies. Gene ontology analysis of the TMM phenotypes unveiled enriched biological processes associated with cell cycle regulation (both TEL and ALT), DNA replication (TEL), and chromosome dynamics (ALT) showing that telomere maintenance is tightly intertwined with cellular processes governing proliferation and genomic stability. Overall, our study provides an overview of the complexity of transcriptional regulation of telomere maintenance mechanisms in cancer.
Collapse
Affiliation(s)
- Meline Hakobyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan, Armenia.
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany; Armenian Bioinformatics Institute, Yerevan, Armenia
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
3
|
Drobyshev A, Modestov A, Suntsova M, Poddubskaya E, Seryakov A, Moisseev A, Sorokin M, Tkachev V, Zakharova G, Simonov A, Zolotovskaia MA, Buzdin A. Pan-cancer experimental characteristic of human transcriptional patterns connected with telomerase reverse transcriptase ( TERT) gene expression status. Front Genet 2024; 15:1401100. [PMID: 38859942 PMCID: PMC11163056 DOI: 10.3389/fgene.2024.1401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.
Collapse
Affiliation(s)
- Aleksey Drobyshev
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Modestov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Suntsova
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Clinical Center Vitamed, Moscow, Russia
| | | | - Aleksey Moisseev
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maksim Sorokin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Galina Zakharova
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aleksander Simonov
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marianna A. Zolotovskaia
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
| | - Anton Buzdin
- Endocrinology Research Center, Moscow, Russia
- Institute of Personalized Oncology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center for Advanced Studies 20, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
4
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
5
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
6
|
Blanco-García L, Ruano Y, Blanco Martínez-Illescas R, Cubo R, Jiménez Sánchez P, Sánchez-Arévalo Lobo VJ, Riveiro Falkenbach E, Ortiz Romero P, Garrido MC, Rodríguez Peralto JL. pTERT C250T mutation: A potential biomarker of poor prognosis in metastatic melanoma. Heliyon 2023; 9:e18953. [PMID: 37609429 PMCID: PMC10440525 DOI: 10.1016/j.heliyon.2023.e18953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and the leading cause of death from cutaneous tumors. Several studies have associated alterations in the TERT promoter region (pTERT) with gene overexpression, aggressiveness and poor prognosis of the disease. The aim of this study was to clarify the role of pTERT molecular status in paired samples of primary melanoma and metastasis using tissue and plasma to establish a correlation with disease progression and survival. A total of 88 FFPE tissue samples from 53 patients with advanced melanoma were analyzed. Of these, 35 had paired samples. We also examined cfDNA samples from plasma of 25 patients. We detected a good correlation between primary tumors and metastases in pTERT mutation and methylation status. We were also able to identify pTERT mutations in plasma samples that correlated with mutational status in tissue samples. Interestingly, the C250T mutation was associated with worse survival and higher TERT mRNA expression, compared to the other most common mutation: C228T. In addition, hyper-methylation of the promoter region seems to be related to the progression of pTERT wild type (WT) patients. These results suggest that TERT gene alterations plays an important role during tumor progression, with the detection of the C250T mutation in tissue and plasma as a potential biomarker of poor prognosis in patients with advanced melanoma.
Collapse
Affiliation(s)
| | - Yolanda Ruano
- Research Institute 12 de Octubre Hospital, Madrid, Spain
| | - Raquel Blanco Martínez-Illescas
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | - Rocío Cubo
- Research Institute 12 de Octubre Hospital, Madrid, Spain
| | - Paula Jiménez Sánchez
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Research Institute 12 de Octubre Hospital, Madrid, Spain
- Biosanitary Research Institute, Faculty of Experimental Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Madrid, Spain
| | | | - Pablo Ortiz Romero
- Department of Dermatology, 12 de Octubre University Hospital, Madrid, Spain
| | - María C. Garrido
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
- Complutense University of Madrid; Madrid, Spain
| | - José L. Rodríguez Peralto
- Department of Pathology, 12 de Octubre University Hospital, Madrid, Spain
- Complutense University of Madrid; Madrid, Spain
| |
Collapse
|
7
|
Dobre EG, Constantin C, Neagu M. Skin Cancer Research Goes Digital: Looking for Biomarkers within the Droplets. J Pers Med 2022; 12:jpm12071136. [PMID: 35887633 PMCID: PMC9323323 DOI: 10.3390/jpm12071136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Skin cancer, which includes the most frequent malignant non-melanoma carcinomas (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC), along with the difficult to treat cutaneous melanoma (CM), pose important worldwide issues for the health care system. Despite the improved anti-cancer armamentarium and the latest scientific achievements, many skin cancer patients fail to respond to therapies, due to the remarkable heterogeneity of cutaneous tumors, calling for even more sophisticated biomarker discovery and patient monitoring approaches. Droplet digital polymerase chain reaction (ddPCR), a robust method for detecting and quantifying low-abundance nucleic acids, has recently emerged as a powerful technology for skin cancer analysis in tissue and liquid biopsies (LBs). The ddPCR method, being capable of analyzing various biological samples, has proved to be efficient in studying variations in gene sequences, including copy number variations (CNVs) and point mutations, DNA methylation, circulatory miRNome, and transcriptome dynamics. Moreover, ddPCR can be designed as a dynamic platform for individualized cancer detection and monitoring therapy efficacy. Here, we present the latest scientific studies applying ddPCR in dermato-oncology, highlighting the potential of this technology for skin cancer biomarker discovery and validation in the context of personalized medicine. The benefits and challenges associated with ddPCR implementation in the clinical setting, mainly when analyzing LBs, are also discussed.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Correspondence:
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
8
|
Xiang Y, Chen Q, Li Q, Liang C, Cao W. The expression level of chicken telomerase reverse transcriptase in tumors induced by ALV-J is positively correlated with methylation and mutation of its promoter region. Vet Res 2022; 53:49. [PMID: 35739589 PMCID: PMC9229480 DOI: 10.1186/s13567-022-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Arroyo K, Nargizyan A, Andrade FG, Myint SS, Lu S, Pandey P, Yee A, de Smith AJ, Wiemels JL. Development of a Droplet Digital™ PCR DNA methylation detection and quantification assay of prenatal tobacco exposure. Biotechniques 2022; 72:121-133. [PMID: 35255733 DOI: 10.2144/btn-2021-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is a labile modification associated with gene expression control and environmental adaptations. High throughput, scalable and quantitative assessments of specific DNA methylation modifications in complex genomic regions for use in large population studies are needed. The performance of Droplet Digital™ PCR (ddPCR™) was investigated for DNA methylation detection against next-generation bisulfite sequencing (NGS) to demonstrate the ability of ddPCR to detect and validate DNA methylation levels and complex patterns among neighboring CpGs in regions associated with prenatal tobacco exposure. While both techniques are reproducible, ddPCR demonstrates a unique advantage for high-throughput DNA methylation analysis in large-scale population studies and provides the specificity to accurately measure DNA methylation of target CpGs in complex regions.
Collapse
Affiliation(s)
- Katti Arroyo
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anahit Nargizyan
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Francianne G Andrade
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Sabrina Lu
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Priyatama Pandey
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amy Yee
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Kang SY, Kim DG, Kim H, Cho YA, Ha SY, Kwon GY, Jang KT, Kim KM. Direct comparison of the next-generation sequencing and iTERT PCR methods for the diagnosis of TERT hotspot mutations in advanced solid cancers. BMC Med Genomics 2022; 15:25. [PMID: 35135543 PMCID: PMC8827275 DOI: 10.1186/s12920-022-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
Background Mutations in the telomerase reverse transcriptase (TERT) promoter region have been proposed as novel mechanisms for the transcriptional activation of telomerase. Two recurrent mutations in the TERT promoter, C228T and C250T, are prognostic biomarkers. Herein, we directly compared the commercially available iTERT PCR kit with NGS-based deep sequencing to validate the NGS results and determine the analytical sensitivity of the PCR kit.
Methods Of the 2032 advanced solid tumors diagnosed using the TruSight Oncology 500 NGS test, mutations in the TERT promoter region were detected in 103 cases, with 79 cases of C228T, 22 cases of C250T, and 2 cases of C228A hotspot mutations. TERT promoter mutations were detected from 31 urinary bladder, 19 pancreato-biliary, 22 hepatic, 12 malignant melanoma, and 12 other tumor samples. Results In all 103 TERT-mutated cases detected using NGS, the same DNA samples were also tested with the iTERT PCR/Sanger sequencing. PCR successfully verified the presence of the same mutations in all cases with 100% agreement. The average read depth of the TERT promoter region was 320.4, which was significantly lower than that of the other genes (mean, 743.5). Interestingly, NGS read depth was significantly higher at C250 compared to C228 (p < 0.001). Conclusions The NGS test results were validated by a PCR test and iTERT PCR/Sanger sequencing is sensitive for the identification of the TERT promoter mutations.
Collapse
Affiliation(s)
- So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Deok Geun Kim
- Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyunjin Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoon Ah Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Ghee Young Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea. .,Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Korea. .,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Tarazón E, de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Sahuquillo Torralba A, Simarro J, Palanca Suela S, Botella Estrada R. MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase. Genes (Basel) 2021; 12:genes12121931. [PMID: 34946880 PMCID: PMC8701232 DOI: 10.3390/genes12121931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests the existence of a miRNA regulatory network involving human telomerase reverse transcriptase gene (hTERT), with miR-138-5p playing a central role in many types of cancers. However, little is known about the regulation of hTERT expression by microRNA (miRNAs) in melanocytic tumors. Here, we investigated the effects of miR-138-5p in hTERT regulation in melanoma cells lines. In vitro studies demonstrated higher miR-138-5p and lower hTERT messenger RNA (mRNA) expression in human epidermal melanocytes, compared with melanoma cell lines (A2058, A375, SK-MEL-28) by quantitative polymerase chain reaction (qPCR) observing a negative correlation between them. A2058 melanoma cells were selected to be transfected with miR-138-5p mimic or inhibitor. Using luciferase assay, hTERT was identified as a direct target of this miRNA. Overexpression of miR-138-5p detected by Western blot revealed a decrease in hTERT protein expression (p = 0.012), and qPCR showed a reduction in telomerase activity (p < 0.001). Moreover, suppressions in cell growth (p = 0.035) and migration abilities (p = 0.015) were observed in A2058-transfected cells using thiazolyl blue tetrazolium bromide and flow cytometry, respectively. This study identifies miR-138-5p as a crucial tumor suppressor miRNA involved in telomerase regulation. Targeting it as a combination therapy with immunotherapy or targeted therapies could be used in advanced melanoma treatment; however, more preclinical studies are necessary.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Blanca de Unamuno Bustos
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Rosa Murria Estal
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Gema Pérez Simó
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Antonio Sahuquillo Torralba
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Javier Simarro
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Palanca Suela
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-9612-44586
| | - Rafael Botella Estrada
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
12
|
Hu K, Ghandi M, Huang FW. Integrated evaluation of telomerase activation and telomere maintenance across cancer cell lines. eLife 2021; 10:e66198. [PMID: 34486523 PMCID: PMC8530513 DOI: 10.7554/elife.66198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer, telomere maintenance is critical for the development of replicative immortality. Using genome sequences from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer Project, we calculated telomere content across 1299 cancer cell lines. We find that telomerase reverse transcriptase (TERT) expression correlates with telomere content in lung, central nervous system, and leukemia cell lines. Using CRISPR/Cas9 screening data, we show that lower telomeric content is associated with dependency of CST telomere maintenance genes. Increased dependencies of shelterin members are associated with wild-type TP53 status. Investigating the epigenetic regulation of TERT, we find widespread allele-specific expression in promoter-wildtype contexts. TERT promoter-mutant cell lines exhibit hypomethylation at PRC2-repressed regions, suggesting a cooperative global epigenetic state in the reactivation of telomerase. By incorporating telomere content with genomic features across comprehensively characterized cell lines, we provide further insights into the role of telomere regulation in cancer immortality.
Collapse
Affiliation(s)
- Kevin Hu
- Broad Institute of MIT and HarvardCambridgeUnited States
- Division of Hematology/Oncology, Department of Medicine; Bakar Computational Health Sciences Institute; Institute for Human Genetics; University of California, San FranciscoSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer CenterSan FranciscoUnited States
| | - Mahmoud Ghandi
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Franklin W Huang
- Broad Institute of MIT and HarvardCambridgeUnited States
- Division of Hematology/Oncology, Department of Medicine; Bakar Computational Health Sciences Institute; Institute for Human Genetics; University of California, San FranciscoSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer CenterSan FranciscoUnited States
| |
Collapse
|
13
|
Kruslin B, Gatalica Z, Hes O, Skenderi F, Miettinen M, Contreras E, Xiu J, Ellis M, Florento E, Vranic S, Swensen J. TERT Gene Fusions Characterize a Subset of Metastatic Leydig Cell Tumors. Clin Genitourin Cancer 2021; 19:333-338. [PMID: 33741265 PMCID: PMC9907364 DOI: 10.1016/j.clgc.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Metastatic Leydig cell tumors (LCT) are rare, difficult-to-treat malignancies without known underlying molecular-genetic events. An index case of metastatic LCT showed an LDLR-TERT gene fusion upon routine genetic profiling for detection of therapeutic targets, which was then followed by an investigation into a cohort of additional LCTs. PATIENTS AND METHODS Twenty-nine LCT (27 male and 2 female patients) were profiled using next-generation sequencing and immunohistochemistry. RESULTS TERT gene fusions were detected only in testicular metastatic LCTs, in 3 of 7 successfully analyzed cases (RMST:TERT, LDLR:TERT, and B4GALT5:TERT). TOP1 and CCND3 amplifications were identified in the case with a B4GALT5:TERT fusion. A TP53 mutation was detected in 1 metastatic tumor without a TERT fusion. Five primary (4 testicular and 1 ovarian) LCTs showed multiple gene amplifications, without a consistent pattern. A single metastatic ovarian LCT showed BAP1 mutation and copy number amplifications affecting the NPM1, PCM1, and SS18 genes. At the protein level, 4 of 7 metastatic and 6 of 10 primary testicular LCTs overexpressed Topo1. Androgen receptor was overexpressed in 10 of 13 primary testicular tumors and 2 of 5 metastatic testicular LCTs (without detectable ARv7 messenger RNA or ARv7 protein). Only 1 metastatic testicular LCT exhibited a high tumor mutational burden; all tested cases were microsatellite instability stable and did not express programmed cell death ligand 1. CONCLUSIONS Our study for the first time identified TERT gene fusions as a main genetic alteration and a potential therapeutic target in metastatic LCTs. Topo1 and androgen receptor may guide decisions on chemotherapy and/or hormone therapy for selected individual patients.
Collapse
Affiliation(s)
- Bozo Kruslin
- Clinical Department of Pathology and Cytology “Ljudevit Jurak”, University Hospital Centre “Sestre milosrdnice”, Zagreb, Croatia,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zoran Gatalica
- Caris Life Sciences, Phoenix, Arizona,Department of Pathology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Pilsen, Czech Republic
| | - Faruk Skenderi
- Department of Pathology, Clinical Center, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.
| | | |
Collapse
|
14
|
Dratwa M, Wysoczańska B, Łacina P, Kubik T, Bogunia-Kubik K. TERT-Regulation and Roles in Cancer Formation. Front Immunol 2020; 11:589929. [PMID: 33329574 PMCID: PMC7717964 DOI: 10.3389/fimmu.2020.589929] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Kubik
- Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
McKelvey BA, Umbricht CB, Zeiger MA. Telomerase Reverse Transcriptase (TERT) Regulation in Thyroid Cancer: A Review. Front Endocrinol (Lausanne) 2020; 11:485. [PMID: 32849278 PMCID: PMC7412884 DOI: 10.3389/fendo.2020.00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of the enzyme telomerase and is essential for telomerase activity. Upregulation of TERT expression and resulting telomerase activity occurs in the large majority of malignancies, including thyroid cancer. This upregulation results in continued cellular proliferation and avoidance of cellular senescence and cell death. In this review we will briefly introduce TERT and telomerase activity as it pertains to thyroid cancer and, highlight the effects of TERT on cancer cells. We will also explore in detail the different TERT regulatory strategies and how TERT is reactivated in thyroid cancer cells, specifically. These regulatory mechanisms include both activating single base pair TERT promoter mutations and epigenetic changes at the promoter, including changes in CpG methylation and histone modifications that affect chromatin structure. Further, regulation includes the allele-specific regulation of the TERT promoter in thyroid cancer cells harboring the TERT promoter mutation. These entail allele-specific transcriptional activator binding, DNA methylation, histone modifications, and mono-allelic expression of TERT. Lastly, TERT copy number alterations and alternative splicing are also implicated. Both amplifications of the TERT locus and increased full-length transcripts and decreased inactive and dominant negative isoforms result in active telomerase. Finally, the clinical significance of TERT in thyroid cancer is also reviewed.
Collapse
Affiliation(s)
- Brittany A. McKelvey
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher B. Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martha A. Zeiger
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Martha A. Zeiger
| |
Collapse
|