1
|
Picod A, Garcia B, Van Lier D, Pickkers P, Herpain A, Mebazaa A, Azibani F. Impaired angiotensin II signaling in septic shock. Ann Intensive Care 2024; 14:89. [PMID: 38877367 PMCID: PMC11178728 DOI: 10.1186/s13613-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Recent years have seen a resurgence of interest for the renin-angiotensin-aldosterone system in critically ill patients. Emerging data suggest that this vital homeostatic system, which plays a crucial role in maintaining systemic and renal hemodynamics during stressful conditions, is altered in septic shock, ultimately leading to impaired angiotensin II-angiotensin II type 1 receptor signaling. Indeed, available evidence from both experimental models and human studies indicates that alterations in the renin-angiotensin-aldosterone system during septic shock can occur at three distinct levels: 1. Impaired generation of angiotensin II, possibly attributable to defects in angiotensin-converting enzyme activity; 2. Enhanced degradation of angiotensin II by peptidases; and/or 3. Unavailability of angiotensin II type 1 receptor due to internalization or reduced synthesis. These alterations can occur either independently or in combination, ultimately leading to an uncoupling between the renin-angiotensin-aldosterone system input and downstream angiotensin II type 1 receptor signaling. It remains unclear whether exogenous angiotensin II infusion can adequately address all these mechanisms, and additional interventions may be required. These observations open a new avenue of research and offer the potential for novel therapeutic strategies to improve patient prognosis. In the near future, a deeper understanding of renin-angiotensin-aldosterone system alterations in septic shock should help to decipher patients' phenotypes and to implement targeted interventions.
Collapse
Affiliation(s)
- Adrien Picod
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France.
| | - Bruno Garcia
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care Medicine, St. Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Mebazaa
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
- Department of Anesthesiology, Burns and Critical Care, Hopitaux Saint-Louis-Lariboisière, AP-HP, Paris, France
| | - Feriel Azibani
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
| |
Collapse
|
2
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
De Hert E, Verboven K, Wouters K, Jocken JWE, De Meester I. Prolyl Carboxypeptidase Activity Is Present in Human Adipose Tissue and Is Elevated in Serum of Obese Men with Type 2 Diabetes. Int J Mol Sci 2022; 23:13529. [PMID: 36362314 PMCID: PMC9655216 DOI: 10.3390/ijms232113529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Prolyl carboxypeptidase (PRCP) is involved in metabolic disorders by hydrolyzing anorexigenic peptides. A link between serum PRCP activity and obesity has been reported, but its origin/source is still unclear. Previously proven correlations between human serum PRCP activity and the amount of adipose tissue may suggest that adipose tissue is an important source of circulating PRCP. We investigated PRCP activity in visceral, subcutaneous adipose tissue (VAT and SCAT), skeletal muscle tissue and serum of lean and obese men with or without type 2 diabetes (T2D). Correlations between PRCP activity, metabolic and biochemical parameters and immune cell populations were assessed. PRCP activity was the highest in VAT, compared to SCAT, and was very low in skeletal muscle tissue in the overall group. Serum PRCP activity was significantly higher in T2-diabetic obese men, compared to lean and obese non-diabetic men, and was positively correlated with glycemic control. A positive correlation was observed between serum PRCP activity and VAT immune cell populations, which might indicate that circulating PRCP activity is deriving rather from the immune fraction than from adipocytes. In conclusion, PRCP activity was observed in human adipose tissue for the first time and serum PRCP activity is correlated with T2D in obese men.
Collapse
Affiliation(s)
- Emilie De Hert
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Kenneth Verboven
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- BIOMED—Biomedical Research Center, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Kristiaan Wouters
- Cardiovascular Research Institute Maastricht (CARIM), Department of Internal Medicine, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Relationship between Dynamic Changes of Microcirculation Flow, Tissue Perfusion Parameters, and Lactate Level and Mortality of Septic Shock in ICU. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1192902. [PMID: 36277595 PMCID: PMC9568350 DOI: 10.1155/2022/1192902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 01/26/2023]
Abstract
Background Septic shock is a common clinical critical disease with high mortality, hemodynamic instability, and easy to be complicated with multiple organ failure. The rapid progress of the patient's condition poses a serious threat to patient's safety. Aim To investigate the relationship between the dynamic monitoring of microcirculation perfusion parameters and blood lactic acid level and the prognosis of patients with infection shock in ICU. Methods A total of 104 patients with septic shock admitted to ICU of Affiliated Hai'an Hospital of Nantong University from February 2018 to June 2021 were selected for clinical research. According to the survival situation of patients after 28 days of treatment, they were divided into the death group (n = 48) and the survival group (n = 56). The central venous-arterial carbon dioxide partial pressure difference (Pcv-aCO2), the ratio of central venous-arterial carbon dioxide partial pressure difference to arterial central venous oxygen content difference (Pcv-aCO2/Ca-cvO2), and blood lactic acid level were retrospectively analyzed and compared between the two groups on the first, third, and seventh days after admission to ICU. The odds ratio (OR) of three indexes affecting the prognosis of patients with septic shock was analyzed by univariate and multivariate mathematical models, and the value of three indexes in predicting the prognosis of patients was analyzed by receiver operating curve (ROC). Results Pcv-aCO2 and lactic acid in the death group were higher than those in the survival group on the 1st, 3rd, and 7th day of ICU stay (P < 0.05). The Pcv-aCO2/Ca-cvO2 of the death group was higher than that of the survival group on the 3rd and 7th day of ICU stay (P < 0.05). Logistic model results showed that age, SOFA score, APACHE II score, the number of multiple organ failure (MODS), intracranial infection, the increase of Pcv-aCO2, Pcv-aCO2/Ca-cvO2, and the increase of lactic acid were independent risk factors for death in patients with septic shock (OR values were 1.519, 1.808, 1.781, 1.912, 2.069, 1.848, 1.781, and 1.642, respectively, P < 0.05). The results showed that the AUC value of Pcv-aCO2 in predicting death was 0.943, and the sensitivity and specificity were 93.72% and 83.09%, respectively. The AUC value of Pcv-aCO2/Ca-cvO2 for predicting death was 0.887, and the sensitivity and specificity were 81.63% and 77.56%, respectively. The AUC value of lactic acid in predicting death of patients was 0.825, and the sensitivity and specificity were 71.66% and 82.09%, respectively. Conclusion Changes of microcirculation flow tissue perfusion parameters and blood lactic acid level changes are closely related to the prognosis of patients with septic shock, which is of great value in the evaluation of the prognosis of patients with septic shock.
Collapse
|
5
|
Brabenec L, Müller M, Hellenthal KE, Karsten OS, Pryvalov H, Otto M, Holthenrich A, Matos ALL, Weiss R, Kintrup S, Hessler M, Dell'Aquila A, Thomas K, Naß J, Margraf A, Nottebaum AF, Rossaint J, Zarbock A, Vestweber D, Gerke V, Wagner NM. Targeting Procalcitonin Protects Vascular Barrier Integrity. Am J Respir Crit Care Med 2022; 206:488-500. [PMID: 35699655 DOI: 10.1164/rccm.202201-0054oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. OBJECTIVE We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. METHODS In a prospective observational clinical study, procalcitonin levels were assessed in 50 cardiac surgery patients and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. MEASUREMENTS AND MAIN RESULTS Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P<0.01), 1.8-fold higher vasopressor demand (P<0.05) and compromised microcirculation (reduction to 63.5±2.8% of perfused vessels, P<0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both P<0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4 and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54±10.1% and 60.4±6.9% (both P<0.01), respectively. Sitagliptin prior to cardiac surgery was associated with augmented microcirculation (74.1±1.7% vs. 68.6±1.9% perfused vessels in sitagliptin non-medicated patients, P<0.05) and 2.3-fold decreased fluid (P<0.05) and 1.8-fold reduced vasopressor demand postoperatively (P<0.05). CONCLUSION Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.
Collapse
Affiliation(s)
- Laura Brabenec
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Melanie Müller
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Katharina Em Hellenthal
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Ole S Karsten
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Heorhii Pryvalov
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Mandy Otto
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Anna Holthenrich
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | | | - Raphael Weiss
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Sebastian Kintrup
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Michael Hessler
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Angelo Dell'Aquila
- University Hospital Münster, Department of Cardiac and Thoracic Surgery, Münster, Germany
| | - Katharina Thomas
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Johannes Naß
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Andreas Margraf
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Jan Rossaint
- Universitätsklinikum Münster, 39069, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Alexander Zarbock
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Volker Gerke
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Nana-Maria Wagner
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany;
| |
Collapse
|
6
|
Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta 2022; 531:4-11. [PMID: 35283094 PMCID: PMC8920094 DOI: 10.1016/j.cca.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19 patients experience several features of dysregulated immune system observed in sepsis. We previously showed a dysregulation of several proline-selective peptidases such as dipeptidyl peptidase 4 (DPP4), fibroblast activation protein alpha (FAP), prolyl oligopeptidase (PREP) and prolylcarboxypeptidase (PRCP) in sepsis. In this study, we investigated whether these peptidases are similarly dysregulated in hospitalized COVID-19 patients. METHODS Fifty-six hospitalized COVID-19 patients and 32 healthy controls were included. Enzymatic activities of DPP4, FAP, PREP and PRCP were measured in samples collected shortly after hospital admission and in longitudinal follow-up samples. RESULTS Compared to healthy controls, both DPP4 and FAP activities were significantly lower in COVID-19 patients at hospital admission and FAP activity further decreased significantly in the first week of hospitalization. While PRCP activity remained unchanged, PREP activity was significantly increased in COVID-19 patients at hospitalization and further increased during hospital stay and stayed elevated until the day of discharge. CONCLUSION The changes in activities of proline-selective peptidases in plasma are very similar in COVID-19 and septic shock patients. The pronounced decrease in FAP activity deserves further investigation, both from a pathophysiological viewpoint and as its utility as a part of a biomarker panel.
Collapse
|
7
|
DDX3X mRNA Expression in T Cells Is Associated with the Severity and Mortality of Septic Patients. DISEASE MARKERS 2022; 2022:5176915. [PMID: 35178128 PMCID: PMC8847006 DOI: 10.1155/2022/5176915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Purpose DDX3X acts as the critical checkpoint of death in stressed cells. The purpose of this study was to evaluate the mRNA expression level of DDX3X in T cells in peripheral blood of patients with sepsis and to explore its correlation with the prognosis of sepsis. Methods Seventy-nine patients with traumatic sepsis were enrolled in this prospective cohort study. Blood samples were collected within 24 hours after the diagnosis of sepsis or septic shock, and the mRNA expression level of DDX3X in T cells was detected by PCR. Results The level of DDX3X mRNA in T cells was significantly increased in septic patients as well as in septic shock patients. The level of DDX3X mRNA was negatively correlated with T cell count and positively correlated with acute physiological and chronic health assessment (APACHE) score and sequential organ failure assessment (SOFA) score (P < 0.01). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.79 (95% confidence interval (CI), 0.68-0.90). A Cox proportional hazard model identified an association between an increased DDX3X mRNA level (≥1.575) and the risk of 28-day mortality (hazard ratio = 9.540, 95% CI, 2.452-37.108). Conclusions High level of DDX3X mRNA in T cells in sepsis is associated with the severity of sepsis and the mortality of patients with sepsis.
Collapse
|
8
|
Atila A, Alay H, Yaman ME, Akman TC, Cadirci E, Bayrak B, Celik S, Atila NE, Yaganoglu AM, Kadioglu Y, Halıcı Z, Parlak E, Bayraktutan Z. The serum amino acid profile in COVID-19. Amino Acids 2021; 53:1569-1588. [PMID: 34605988 PMCID: PMC8487804 DOI: 10.1007/s00726-021-03081-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
The pandemic of the coronavirus disease (COVID-19) caused by SARS-CoV-2 affects millions of people worldwide. There are still many unknown aspects to this infection which affects the whole world. In addition, the potential impacts caused by this infection are still unclear. Amino acid metabolism, in particular, contains significant clues in terms of the development and prevention of many diseases. Therefore, this study aimed to compare amino acid profile of COVID-19 and healthy subject. In this study, the amino acid profiles of patients with asymptomatic, mild, moderate, and severe/critical SARS-CoV-2 infection were scanned with LC–MS/MS. The amino acid profile encompassing 30 amino acids in 142 people including 30 control and 112 COVID-19 patients was examined. 20 amino acids showed significant differences when compared to the control group in COVID-19 patient groups with different levels of severity in the statistical analyses conducted. It was detected that the branched-chain amino acids (BCAAs) changed in correlation with one another, and l-2-aminobutyric acid and l-phenylalanine had biomarker potential for COVID-19. Moreover, it was concluded that l-2-aminobutyric acid could provide prognostic information about the course of the disease. We believe that a new viewpoint will develop regarding the diagnosis, treatment, and prognosis as a result of the evaluation of the serum amino acid profiles of COVID-19 patients. Determining l-phenylalanine and l-2-aminobutyric levels can be used in laboratories as a COVID-19-biomarker. Also, supplementing COVID patients with taurine and BCAAs can be beneficial for treatment protocols.
Collapse
Affiliation(s)
- Alptug Atila
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Handan Alay
- Department of Infectious Diseases and Clinical Microbiology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Mehmet Emrah Yaman
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Tugrul Cagri Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 25240 Erzurum, Turkey
| | - Elif Cadirci
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Burak Bayrak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Saffet Celik
- Technology Research and Development Application and Research Center, Trakya University, 22030 Edirne, Turkey
| | - Nihal Efe Atila
- Department of Otorhinolaryngology, Erzurum Regional Training and Research Hospital, 25240 Erzurum, Turkey
| | - Aycan Mutlu Yaganoglu
- Department of Animal Science, College of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Yucel Kadioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Zekai Halıcı
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Emine Parlak
- Department of Infectious Diseases and Clinical Microbiology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| |
Collapse
|
9
|
Morieri ML, Bonora BM, Longato E, Di Camilo B, Sparacino G, Tramontan L, Avogaro A, Fadini GP. Exposure to dipeptidyl-peptidase 4 inhibitors and the risk of pneumonia among people with type 2 diabetes: Retrospective cohort study and meta-analysis. Diabetes Obes Metab 2020; 22:1925-1934. [PMID: 32691492 DOI: 10.1111/dom.14142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
AIM Concerns have been raised that dipeptidyl-peptidase 4 inhibitors (DPP-4i) may increase the risk of pneumonia. We analysed observational data and clinical trials to explore whether use of DPP-4i modifies the risk of pneumonia. METHODS We identified patients with diabetes in the Veneto region administrative database and performed propensity score matching between new users of DPP-4 inhibitors and new users of other oral glucose-lowering medications (OGLMs). We compared the rate of hospitalization for pneumonia between matched cohorts using the Cox proportional hazard model. The same analysis was repeated using the database of a local diabetes outpatient clinic. We retrieved similar observational studies from the literature to perform a meta-analysis. Results from trials reporting pneumonia rates among patients randomized to DPP-4 inhibitors versus placebo/active comparators were also meta-analysed. RESULTS In the regional database, after matching 6495 patients/group, new users of DPP-4 inhibitors had a lower rate of hospitalization for pneumonia than new users of other OGLMs (HR 0.76; 95% CI 0.61-0.95). In the outpatient database, after matching 867 patients/group, new users of DPP-4 inhibitors showed a non-significantly lower rate of hospitalization for pneumonia (HR 0.65; 95% CI 0.41-1.04). The meta-analysis of observational studies yielded an overall non-significant lower risk of hospitalization for pneumonia among DPP-4 inhibitor users (RR 0.81; 95% CI 0.65-1.01). The meta-analysis of randomized controlled trials showed no overall effect of DPP-4 inhibitors on pneumonia risk (RR 1.06; 95% CI 0.93-1.20). CONCLUSION The use of DPP-4 inhibitors can be considered as safe with regard to the risk of pneumonia.
Collapse
Affiliation(s)
| | | | - Enrico Longato
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Barbara Di Camilo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Lara Tramontan
- Arsenàl.IT, Veneto's Research Centre for eHealth Innovation, Treviso, Italy
| | - Angelo Avogaro
- Department of Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|