1
|
Taylor OB, El-Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2024. [PMID: 39448874 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Massachusetts, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2024:01515467-990000000-00981. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Hui SP, Sugimoto K, Sheng DZ, Kikuchi K. Regulatory T cells regulate blastemal proliferation during zebrafish caudal fin regeneration. Front Immunol 2022; 13:981000. [PMID: 36059461 PMCID: PMC9429828 DOI: 10.3389/fimmu.2022.981000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The role of T cells in appendage regeneration remains unclear. In this study, we revealed an important role for regulatory T cells (Tregs), a subset of T cells that regulate tolerance and tissue repair, in the epimorphic regeneration of zebrafish caudal fin tissue. Upon amputation, fin tissue-resident Tregs infiltrate into the blastema, a population of progenitor cells that produce new fin tissues. Conditional genetic ablation of Tregs attenuates blastemal cell proliferation during fin regeneration. Blastema-infiltrating Tregs upregulate the expression of igf2a and igf2b, and pharmacological activation of IGF signaling restores blastemal proliferation in Treg-ablated zebrafish. These findings further extend our understandings of Treg function in tissue regeneration and repair.
Collapse
Affiliation(s)
- Subhra P. Hui
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| | - Kotaro Sugimoto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Delicia Z. Sheng
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, University of New South Wales, Kensington, NSW, Australia
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| |
Collapse
|
5
|
Sehring I, Weidinger G. Zebrafish Fin: Complex Molecular Interactions and Cellular Mechanisms Guiding Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a040758. [PMID: 34649924 PMCID: PMC9248819 DOI: 10.1101/cshperspect.a040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The zebrafish caudal fin has become a popular model to study cellular and molecular mechanisms of regeneration due to its high regenerative capacity, accessibility for experimental manipulations, and relatively simple anatomy. The formation of a regenerative epidermis and blastema are crucial initial events and tightly regulated. Both the regenerative epidermis and the blastema are highly organized structures containing distinct domains, and several signaling pathways regulate the formation and interaction of these domains. Bone is the major tissue regenerated from the progenitor cells of the blastema. Several cellular mechanisms can provide source cells for blastemal (pre-)osteoblasts, including dedifferentiation of differentiated osteoblasts and de novo formation from other cell types, providing intriguing examples of cellular plasticity. In recent years, omics analyses and single-cell approaches have elucidated genetic and epigenetic regulation, increasing our knowledge of the surprisingly complex coordination of various mechanisms to achieve successful restoration of a seemingly simple structure.
Collapse
Affiliation(s)
- Ivonne Sehring
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
6
|
Li D, Velazquez JJ, Ding J, Hislop J, Ebrahimkhani MR, Bar-Joseph Z. TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data. Genome Biol 2022; 23:73. [PMID: 35255944 PMCID: PMC8900372 DOI: 10.1186/s13059-022-02629-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
A major advantage of single cell RNA-sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells. Here we present TraSig, a computational method for improving the inference of cell-cell interactions in scRNA-Seq studies that utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters. We applied TraSig to several scRNA-Seq datasets and obtained unique predictions that improve upon those identified by prior methods. Functional experiments validate the ability of TraSig to identify novel signaling interactions that impact vascular development in liver organoids.Software https://github.com/doraadong/TraSig .
Collapse
Affiliation(s)
- Dongshunyi Li
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Joshua Hislop
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219, PA, USA.
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| |
Collapse
|
7
|
Kapuria S, Bai H, Fierros J, Huang Y, Ma F, Yoshida T, Aguayo A, Kok F, Wiens KM, Yip JK, McCain ML, Pellegrini M, Nagashima M, Hitchcock PF, Mochizuki N, Lawson ND, Harrison MMR, Lien CL. Heterogeneous pdgfrb+ cells regulate coronary vessel development and revascularization during heart regeneration. Development 2022; 149:274137. [PMID: 35088848 PMCID: PMC8918812 DOI: 10.1242/dev.199752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrβ, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.
Collapse
Affiliation(s)
- Subir Kapuria
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Haipeng Bai
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Juancarlos Fierros
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Ying Huang
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler Yoshida
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Antonio Aguayo
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Fatma Kok
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katie M. Wiens
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Science Department, Bay Path University, Longmeadow, MA 01106, USA
| | - Joycelyn K. Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael M. R. Harrison
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Ching-Ling Lien
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Authors for correspondence (; ; )
| |
Collapse
|
8
|
mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sci 2022; 12:brainsci12020284. [PMID: 35204047 PMCID: PMC8870249 DOI: 10.3390/brainsci12020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
In contrast to mammals, adult zebrafish display an extraordinary capacity to heal injuries and repair damage in the central nervous system. Pivotal for the regenerative capacity of the zebrafish brain at adult stages is the precise control of neural stem cell (NSC) behavior and the maintenance of the stem cell pool. The gene mdka, a member of a small family of heparin binding growth factors, was previously shown to be involved in regeneration in the zebrafish retina, heart, and fin. Here, we investigated the expression pattern of the gene mdka and its paralogue mdkb in the zebrafish adult telencephalon under constitutive and regenerative conditions. Our findings show that only mdka expression is specifically restricted to the telencephalic ventricle, a stem cell niche of the zebrafish telencephalon. In this brain region, mdka is particularly expressed in the quiescent stem cells. Interestingly, after brain injury, mdka expression remains restricted to the resting stem cell, which might suggest a role of mdka in regulating stem cell quiescence.
Collapse
|
9
|
Grivas D, González-Rajal Á, de la Pompa JL. Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Front Cell Dev Biol 2021; 9:669439. [PMID: 34026760 PMCID: PMC8138450 DOI: 10.3389/fcell.2021.669439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Unlike the hearts of mammals, the adult zebrafish heart regenerates after injury. Heart cryoinjury in zebrafish triggers the formation of a fibrotic scar that gradually degrades, leading to regeneration. Midkine-a (Mdka) is a multifunctional cytokine that is activated after cardiac injury. Here, we investigated the role of mdka in zebrafish heart regeneration. We show that mdka expression was induced at 1-day post-cryoinjury (dpci) throughout the epicardial layer, whereas by 7 dpci expression had become restricted to the epicardial cells covering the injured area. To study the role of mdka in heart regeneration, we generated mdka-knock out (KO) zebrafish strains. Analysis of injured hearts showed that loss of mdka decreased endothelial cell proliferation and resulted in an arrest in heart regeneration characterized by retention of a collagenous scar. Transcriptional analysis revealed increases in collagen transcription and intense TGFβ signaling activity. These results reveal a critical role for mdka in fibrosis regulation during heart regeneration.
Collapse
Affiliation(s)
- Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain.,Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
10
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|