1
|
John E, Lesluyes T, Baker TM, Tarabichi M, Gillenwater A, Wang JR, Van Loo P, Zhao X. Reconstructing oral cavity tumor evolution through brush biopsy. Sci Rep 2024; 14:22591. [PMID: 39343812 PMCID: PMC11439926 DOI: 10.1038/s41598-024-72946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Oral potentially malignant disorders (OPMDs) with genomic alterations have a heightened risk of evolving into oral squamous cell carcinoma (OSCC). Currently, genomic data are typically obtained through invasive tissue biopsy. However, brush biopsy is a non-invasive method that has been utilized for identifying dysplastic cells in OPMD but its effectiveness in reflecting the genomic landscape of OPMDs remains uncertain. This pilot study investigates the potential of brush biopsy samples in accurately reconstructing the genomic profile and tumor evolution in a patient with both OPMD and OSCC. We analyzed single nucleotide variants (SNVs), copy number aberrations (CNAs), and subclonal architectures in paired tissue and brush biopsy samples. The results showed that brush biopsy effectively captured 90% of SNVs and had similar CNA profiles as those seen in its paired tissue biopsies in all lesions. It was specific, as normal buccal mucosa did not share these genomic alterations. Interestingly, brush biopsy revealed shared SNVs and CNAs between the distinct OPMD and OSCC lesions from the same patient, indicating a common ancestral origin. Subclonal reconstruction confirmed this shared ancestry, followed by divergent evolution of the lesions. These findings highlight the potential of brush biopsies in accurately representing the genomic profile of OPL and OSCC, proving insight into reconstructing tumor evolution.
Collapse
Affiliation(s)
- Evit John
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
| | | | - Toby M Baker
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
| | - Maxime Tarabichi
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Gillenwater
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Peter Van Loo
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA
- The Francis Crick Institute, London, UK
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Xiao Zhao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, FCT 10.6008, 77030, TX, Houston, USA.
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
2
|
Lu HJ, Su CW, Su SC, Chang LC, Wu MF, Lin CW, Yang SF. Prognostic impact of caspase-8 mutation in oral cavity squamous cell carcinoma. Oral Dis 2024. [PMID: 39289898 DOI: 10.1111/odi.15124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Identifying the drive genes and inhibiting their significant signals were persistently the main concepts in cancer treatment. However, for oral cavity squamous cell carcinoma (OCSCC), the most influential genes for overall survival (OS) remain unclear. METHODS A total of 120 OCSCC patients with corresponding pathologic specimens were collected in Taiwan. Whole-exome sequencing was done and the prognostic impact of each gene was analyzed. TCGA database was used to validate. RESULTS The incidences of caspase-8 mutation were 22.1% and 10.9% in the Taiwan and TCGA cohort, respectively. In the Taiwan cohort, caspase-8 mutation was the most significant independent for OS with an adjusted hazard ratio (HR) ([95% CI]: 3.83 [1.84-7.99]). It was validated by the TCGA database (HR [95% CI]: 1.51 [1.00-2.29]). The 5-year OSs of the patients with or without caspase-8 mutation were 38.1% vs. 75.3% (p < 0.001) (HR [95% CI]: 3.264 [1.645-6.438]) in the Taiwan cohort, and 26.1% vs. 49.0% (p = 0.048) (1.513 [1.001-2.288]) in the TCGA cohorts, respectively. Caspase-8 mutation was also individually associated with poor prognosis for TNM stage I/II/III/IV, respectively. CASP8 R127* and R494*, defined as pathogenic mutations in ClinVar, were presented in both cohorts. CONCLUSIONS Caspase-8 mutation was the most significant genetic alteration impacting prognosis.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lun-Ching Chang
- Department of Mathematics and Statistics, Florida Atlantic University, Boca Raton, Florida, USA
| | - Ming-Fang Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101565. [PMID: 37459966 DOI: 10.1016/j.jormas.2023.101565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 11/06/2023]
Abstract
Necroptosis is a type of caspase independent 'programmed or regulated' necrotic cell death that has a morphological resemblance to necrosis and mechanistic analogy to apoptosis. This type of cell death requires RIPK1, RIPK3, MLKL, death receptors, toll like receptors, interferons, and various other proteins. Necroptosis is implicated in plethora of diseases like rheumatoid arthritis, Alzheimer's disease, Crohn's disease, and head and neck cancers including oral squamous cell carcinoma. Oral carcinomas show dysregulation or mutation of necroptotic proteins, mediate antitumoral immunity, activate immune response and control tumor progression. Necroptosis is known to play a dual role (pro tumorigenic and anti-tumorigenic) in cancer progression and targeting this pathway could be an effective approach in cancer therapy. Necroptosis based chemotherapy has been proposed in malignancies, highlighting the importance of necroptotic pathway to overcome apoptosis resistance and serve as a "fail-safe" pathway to modulate cancer initiation, progression, and metastasis. However, there is dearth of information regarding the use of necroptotic cell death mechanism in the treatment of oral squamous cell carcinoma. In this review, we summarise molecular mechanism of necroptosis, and its protumorigenic and antitumorigenic role in cancers to shed light on the possible therapeutic significance of necroptosis in oral squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| |
Collapse
|
4
|
Mishra MK, Gupta S, Shivangi, Sharma M, Sehgal S. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer. Clin Transl Oncol 2023; 25:3332-3344. [PMID: 37058208 DOI: 10.1007/s12094-023-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein-Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Sachin Gupta
- Department of ENT and Head and Neck Surgery, ASCOMS, Jammu, J&K, India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Manshi Sharma
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India.
| |
Collapse
|
5
|
Wils LJ, Poell JB, Brink A, Evren I, Brouns ER, de Visscher JGAM, Bloemena E, Brakenhoff RH. Elucidating the Genetic Landscape of Oral Leukoplakia to Predict Malignant Transformation. Clin Cancer Res 2023; 29:602-613. [PMID: 36449687 DOI: 10.1158/1078-0432.ccr-22-2210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Oral leukoplakia is the most common oral potentially malignant disorder with an annual malignant transformation rate of 1% to 5%. Consequently, oral leukoplakia patients have a 30% to 50% lifetime risk to develop oral squamous cell carcinoma. Although risk factors for malignant transformation of oral leukoplakia have been investigated, no definitive risk stratification model has been proposed. Next-generation sequencing can elucidate the genetic landscape of oral leukoplakia, which may be used to predict the risk for malignant transformation. EXPERIMENTAL DESIGN We investigated a retrospective cohort of 89 oral leukoplakia patients, and analyzed their oral leukoplakia lesions for the presence of genomic copy-number alterations and mutations in genes associated with oral squamous cell carcinoma. RESULTS In 25 of 89 (28%) patients, oral squamous cell carcinoma developed during follow-up. Seventy-nine of 89 (89%) oral leukoplakias harbored at least one genetic event. Copy-number alterations were present in 61 of 89 (69%) oral leukoplakias, most commonly gains of chromosome regions 8q24 (46%) and 20p11 (20%) and loss of 13q12 (19%). Mutations were present in 59 of 89 (66%) oral leukoplakias, most commonly in TP53 (28%), FAT1 (20%), and NOTCH1 (13%). Genetic data were combined with the presence of dysplasia to generate a prediction model, identifying three groups with a distinct risk for malignant transformation. CONCLUSIONS We provide an extensive description of genetic alterations in oral leukoplakia and its relation to malignant transformation. On the basis of our data we provide a model for the prediction of malignant transformation of oral leukoplakia using dysplasia and genetic markers.
Collapse
Affiliation(s)
- Leon J Wils
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.,Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Jos B Poell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Arjen Brink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Ilkay Evren
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Elisabeth R Brouns
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Jan G A M de Visscher
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Oral and Maxillofacial Surgery and Oral Pathology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands.,Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Otolaryngology and Head & Neck Surgery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
6
|
Pomella S, Cassandri M, Melaiu O, Marampon F, Gargari M, Campanella V, Rota R, Barillari G. DNA Damage Response Gene Signature as Potential Treatment Markers for Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24032673. [PMID: 36768994 PMCID: PMC9916929 DOI: 10.3390/ijms24032673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a rapidly progressive cancer that often develops resistance against DNA damage inducers, such as radiotherapy and chemotherapy, which are still the standard of care regimens for this tumor. Thus, the identification of biomarkers capable of monitoring the clinical progression of OSCC and its responsiveness to therapy is strongly required. To meet this need, here we have employed Whole Genome Sequencing and RNA-seq data from a cohort of 316 patients retrieved from the TCGA Pan-Cancer Atlas to analyze the genomic and transcriptomic status of the DNA damage response (DDR) genes in OSCC. Then, we correlated the transcriptomic data with the clinical parameters of each patient. Finally, we relied on transcriptomic and drug sensitivity data from the CTRP v2 portal, performing Pearson's correlation analysis to identify putative vulnerabilities of OSCC cell lines correlated with DDR gene expression. Our results indicate that several DDR genes show a high frequency of genomic and transcriptomic alterations and that the expression of some of them correlates with OSCC grading and infection by the human papilloma virus. In addition, we have identified a signature of eight DDR genes (namely CCNB1, CCNB2, CDK2, CDK4, CHECK1, E2F1, FANCD2, and PRKDC) that could be predictive for OSCC response to the novel antitumor compounds sorafenib and tipifarnib-P1. Altogether, our data demonstrate that alterations in DDR genes could have an impact on the biology of OSCC. Moreover, here we propose a DDR gene signature whose expression could be predictive of OSCC responsiveness to therapy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Ghosh A, Das C, Ghose S, Maitra A, Roy B, Majumder PP, Biswas NK. Integrative analysis of genomic and transcriptomic data of normal, tumour and co-occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. J Pathol 2022; 257:593-606. [PMID: 35358331 PMCID: PMC9545831 DOI: 10.1002/path.5900] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A thickened, white patch — leukoplakia — in the oral cavity is usually benign, but sometimes (in ~9% of individuals) it progresses to malignant tumour. Because the genomic basis of this progression is poorly understood, we undertook this study and collected samples of four tissues — leukoplakia, tumour, adjacent normal, and blood — from each of 28 patients suffering from gingivobuccal oral cancer. We performed multiomics analysis of the 112 collected tissues (four tissues per patient from 28 patients) and integrated information on progressive changes in the mutational and transcriptional profiles of each patient to create this genomic narrative. Additionally, we generated and analysed whole‐exome sequence data from leukoplakia tissues collected from 11 individuals not suffering from oral cancer. Nonsynonymous somatic mutations in the CASP8 gene were identified as the likely events to initiate malignant transformation, since these were frequently shared between tumour and co‐occurring leukoplakia. CASP8 alterations were also shown to enhance expressions of genes that favour lateral spread of mutant cells. During malignant transformation, additional pathogenic mutations are acquired in key genes (TP53, NOTCH1, HRAS) (41% of patients); chromosomal‐instability (arm‐level deletions of 19p and q, focal‐deletion of DNA‐repair pathway genes and NOTCH1, amplification of EGFR) (77%), and increased APOBEC‐activity (23%) are also observed. These additional alterations were present singly (18% of patients) or in combination (68%). Some of these alterations likely impact immune‐dynamics of the evolving transformed tissue; progression to malignancy is associated with immune suppression through infiltration of regulatory T‐cells (56%), depletion of cytotoxic T‐cells (68%), and antigen‐presenting dendritic cells (72%), with a concomitant increase in inflammation (92%). Patients can be grouped into three clusters by the estimated time to development of cancer from precancer by acquiring additional mutations (range: 4–10 years). Our findings provide deep molecular insights into the evolutionary processes and trajectories of oral cancer initiation and progression. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | - Sandip Ghose
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, India.,Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
8
|
Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031562. [PMID: 35163485 PMCID: PMC8836072 DOI: 10.3390/ijms23031562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is the most common form of head and neck squamous cell carcinoma (HNSCC) and most frequently presents as oral squamous cell carcinoma (OSCC), which is associated with an alarmingly high mortality rate. Internationally, a plethora of research to further our understanding of the molecular pathways related to oral cancer is performed. This research is of value for early diagnosis, prognosis, and the investigation of new drugs that can ameliorate the harmful effects of oral cancer and provide optimal patient outcomes with minimal long-term complications. Two pathways on which the progression of OSCC depends on are those of proliferation and apoptosis, which overlap at many junctions. Herein, we aim to review these pathways and factors related to OSCC progression. Publicly available search engines, PubMed and Google Scholar, were used with the following keywords to identify relevant literature: oral cancer, proliferation, proliferation factors, genes, mutations, and tumor suppressor. We anticipate that the use of information provided through this review will further progress translational cancer research work in the field of oral cancer.
Collapse
|
9
|
Shenoy SR, Dey B. Funding for cancer research by an Indian funding agency, DBT. J Biosci 2021. [DOI: 10.1007/s12038-020-00121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Desai SS, K RR, Jain A, Bawa PS, Dutta P, Atre G, Subhash A, Rao VUS, J S, Srinivasan S, Choudhary B. Multidimensional Mutational Profiling of the Indian HNSCC Sub-Population Provides IRAK1, a Novel Driver Gene and Potential Druggable Target. Front Oncol 2021; 11:723162. [PMID: 34796107 PMCID: PMC8593415 DOI: 10.3389/fonc.2021.723162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) include heterogeneous group of tumors, classified according to their anatomical site. It is the sixth most prevalent cancer globally. Among South Asian countries, India accounts for 40% of HNC malignancies with significant morbidity and mortality. In the present study, we have performed exome sequencing and analysis of 51 Head and Neck squamous cell carcinoma samples. Besides known mutations in the oncogenes and tumour suppressors, we have identified novel gene signatures differentiating buccal, alveolar, and tongue cancers. Around 50% of the patients showed mutation in tumour suppressor genes TP53 and TP63. Apart from the known mutations, we report novel mutations in the genes AKT1, SPECC1, and LRP1B, which are linked with tumour progression and patient survival. A highly curated process was developed to identify survival signatures. 36 survival-related genes were identified based on the correlation of functional impact of variants identified using exome-seq with gene expression from transcriptome data (GEPIA database) and survival. An independent LASSO regression analysis was also performed. Survival signatures common to both the methods led to identification of 4 dead and 3 alive gene signatures, the accuracy of which was confirmed by performing a ROC analysis (AUC=0.79 and 0.91, respectively). Also, machine learning-based driver gene prediction tool resulted in the identification of IRAK1 as the driver (p-value = 9.7 e-08) and also as an actionable mutation. Modelling of the IRAK1 mutation showed a decrease in its binding to known IRAK1 inhibitors.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India.,Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, India
| | - Raksha Rao K
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Anika Jain
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Katpadi, Vellore, India
| | - Pushpinder Singh Bawa
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Priyatam Dutta
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Gaurav Atre
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Anand Subhash
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Vishal U S Rao
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Suvratha J
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Subhashini Srinivasan
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
11
|
Resistance of B-Cell Lymphomas to CAR T-Cell Therapy Is Associated With Genomic Tumor Changes Which Can Result in Transdifferentiation. Am J Surg Pathol 2021; 46:742-753. [PMID: 34799485 DOI: 10.1097/pas.0000000000001834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy (CART) in B-cell non-Hodgkin lymphomas, durable responses are uncommon. The histopathologic and molecular features associated with treatment failure are still largely unknown. Therefore, we have analyzed 19 sequential tumor samples from 9 patients, prior anti-CD19 CART (pre-CART) and at relapse (post-CART), using immunohistochemistry, fluorescence in situ hybridization, array comparative genomic hybridization, next-generation DNA and RNA sequencing, and genome-scale DNA methylation. The initial diagnosis was diffuse large B-cell lymphoma (n=6), double-hit high-grade B-cell lymphoma (n=1), and Burkitt lymphoma (n=2). Histopathologic features were mostly retained at relapse in 7/9 patients, except the frequent loss of 1 or several B-cell markers. The remaining 2 cases (1 diffuse large B-cell lymphoma and 1 Burkitt lymphoma) displayed a dramatic phenotypic shift in post-CART tumors, with the drastic downfall of B-cell markers and emergence of T-cell or histiocytic markers, despite the persistence of identical clonal immunoglobulin gene rearrangements. The post-CART tumor with aberrant T-cell phenotype showed reduced mRNA expression of most B-cell genes with increased methylation of their promoter. Fluorescence in situ hybridization and comparative genomic hybridization showed global stability of chromosomal alterations in all paired samples, including 17p/TP53 deletions. New pathogenic variants acquired in post-CART samples included mutations triggering the PI3K pathway (PIK3R1, PIK3R2, PIK3C2G) or associated with tumor aggressiveness (KRAS, INPP4B, SF3B1, SYNE1, TBL1XR1). These results indicate that CART-resistant B-cell non-Hodgkin lymphomas display genetic remodeling, which may result in profound dysregulation of B-cell differentiation. Acquired mutations in the PI3K and KRAS pathways suggest that some targeted therapies could be useful to overcome CART resistance.
Collapse
|
12
|
Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK. Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer. Cancer Lett 2021; 518:102-114. [PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
Collapse
Affiliation(s)
- S S Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| | - N Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Carlton, Melbourne, Victoria, 3053, Australia.
| | - S C Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, 1 Jalan SS12/1A, Subang Jaya, Selangor, Malaysia.
| | - M S Prime
- Roche Diagnostics Information Solutions, Hoffman-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - E K Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
13
|
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, Sidransky D, Ganesh MS, Ray JG, Gowda H, Chatterjee A. Whole-Exome Sequencing Analysis of Oral Squamous Cell Carcinoma Delineated by Tobacco Usage Habits. Front Oncol 2021; 11:660696. [PMID: 34136393 PMCID: PMC8200776 DOI: 10.3389/fonc.2021.660696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
14
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|