1
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
2
|
Kalams SA, Felber BK, Mullins JI, Scott HM, Allen MA, De Rosa SC, Heptinstall J, Tomaras GD, Hu J, DeCamp AC, Rosati M, Bear J, Pensiero MN, Eldridge J, Egan MA, Hannaman D, McElrath MJ, Pavlakis GN. Focusing HIV-1 Gag T cell responses to highly conserved regions by DNA vaccination in HVTN 119. JCI Insight 2024; 9:e180819. [PMID: 39088271 PMCID: PMC11466283 DOI: 10.1172/jci.insight.180819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUNDAn HIV-1 DNA vaccine composed of 7 highly conserved, structurally important elements (conserved elements, CE) of p24Gag was tested in a phase I randomized, double-blind clinical trial (HVTN 119, NCT03181789) in people without HIV. DNA vaccination of CE prime/CE+p55Gag boost was compared with p55Gag.METHODSTwo groups (n = 25) received 4 DNA vaccinations (CE/CE+p55Gag or p55Gag) by intramuscular injection/electroporation, including IL-12 DNA adjuvant. The placebo group (n = 6) received saline. Participants were followed for safety and tolerability. Immunogenicity was assessed for T cell and antibody responses.RESULTSBoth regimens were safe and generally well tolerated. The p24CE vaccine was immunogenic and significantly boosted by CE+p55Gag (64% CD4+, P = 0.037; 42% CD8+, P = 0.004). CE+p55Gag induced responses to 5 of 7 CE, compared with only 2 CE by p55Gag DNA, with a higher response to CE5 in 30% of individuals (P = 0.006). CE+p55Gag induced significantly higher CD4+ CE T cell breadth (0.68 vs. 0.22 CE; P = 0.029) and a strong trend for overall T cell breadth (1.14 vs. 0.52 CE; P = 0.051). Both groups developed high cellular and humoral responses. p24CE vaccine-induced CD4+ CE T cell responses correlated (P = 0.007) with p24Gag antibody responses.CONCLUSIONThe CE/CE+p55Gag DNA vaccine induced T cell responses to conserved regions in p24Gag, increasing breadth and epitope recognition throughout p55Gag compared with p55Gag DNA. Vaccines focusing immune responses by priming responses to highly conserved regions could be part of a comprehensive HIV vaccine strategy.TRIAL REGISTRATIONClinical Trials.gov NCT03181789FUNDINGHVTN, NIAID/NIH.
Collapse
Affiliation(s)
- Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James I. Mullins
- Departments of Microbiology, Medicine and Global Health, University of Washington, Seattle, Washington, USA
| | - Hyman M. Scott
- San Francisco Department of Public Health, San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Mary A. Allen
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Durham, North Carolina, USA
| | - Jiani Hu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Allan C. DeCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Michael N. Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | - Michael A. Egan
- Auro Vaccines LLC (formerly Profectus BioSciences, Inc.), Pearl River, New York, USA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
3
|
Lu C, Rohilla P, Felner EI, Byagathvalli G, Azizoglu E, Bhamla MS, Prausnitz MR. Tolerability of a piezoelectric microneedle electroporator in human subjects. Bioeng Transl Med 2024; 9:e10662. [PMID: 39036075 PMCID: PMC11256137 DOI: 10.1002/btm2.10662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 07/23/2024] Open
Abstract
Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.
Collapse
Affiliation(s)
- Chao‐Yi Lu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Pankaj Rohilla
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Eric I. Felner
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Pediatrics, Division of EndocrinologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Gaurav Byagathvalli
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Erkan Azizoglu
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - M. Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Mark R. Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Jacobson JM, Felber BK, Chen H, Pavlakis GN, Mullins JI, De Rosa SC, Kuritzkes DR, Tomaras GD, Kinslow J, Bao Y, Olefsky M, Rosati M, Bear J, Heptinstall JR, Zhang L, Sawant S, Hannaman D, Laird GM, Cyktor JC, Heath SL, Collier AC, Koletar SL, Taiwo BO, Tebas P, Wohl DA, Belaunzaran-Zamudio PF, McElrath MJ, Landay AL. The immunogenicity of an HIV-1 Gag conserved element DNA vaccine in people with HIV and receiving antiretroviral therapy. AIDS 2024; 38:963-973. [PMID: 38051788 PMCID: PMC11062837 DOI: 10.1097/qad.0000000000003804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The primary objective of the study was to assess the immunogenicity of an HIV-1 Gag conserved element DNA vaccine (p24CE DNA) in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). DESIGN AIDS Clinical Trials Group A5369 was a phase I/IIa, randomized, double-blind, placebo-controlled study of PWH receiving ART with plasma HIV-1 RNA less than 50 copies/ml, current CD4 + T-cell counts greater than 500 cells/μl, and nadir CD4 + T-cell counts greater than 350 cells/μl. METHODS The study enrolled 45 participants randomized 2 : 1 : 1 to receive p24CE DNA vaccine at weeks 0 and 4, followed by p24CE DNA admixed with full-length p55 Gag DNA vaccine at weeks 12 and 24 (arm A); full-length p55 Gag DNA vaccine at weeks 0, 4, 12, and 24 (arm B); or placebo at weeks 0, 4, 12, and 24 (arm C). The active and placebo vaccines were administered by intramuscular electroporation. RESULTS There was a modest, but significantly greater increase in the number of conserved elements recognized by CD4 + and/or CD8 + T cells in arm A compared with arm C ( P = 0.014). The percentage of participants with an increased number of conserved elements recognized by T cells was also highest in arm A (8/18, 44.4%) vs. arm C (0/10, 0.0%) ( P = 0.025). There were no significant differences between treatment groups in the change in magnitude of responses to total conserved elements. CONCLUSION A DNA-delivered HIV-1 Gag conserved element vaccine boosted by a combination of this vaccine with a full-length p55 Gag DNA vaccine induced a new conserved element-directed cellular immune response in approximately half the treated PWH on ART.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Huichao Chen
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - James I Mullins
- Departments of Microbiology, Medicine, and Global Health, University of Washington, Seattle, WA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Jennifer Kinslow
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Yajing Bao
- Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Sheetal Sawant
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | | | | | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Sonya L Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Ann C Collier
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Susan L Koletar
- Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH
| | - Babafemi O Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pablo Tebas
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Wohl
- Division of Infectious Diseases, Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, NC
| | - Pablo F Belaunzaran-Zamudio
- Contractor, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| |
Collapse
|
5
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Tu HF, Wong M, Tseng SH, Ingavat N, Olczak P, Notarte KI, Hung CF, Roden RBS. Virus-like particle vaccine displaying an external, membrane adjacent MUC16 epitope elicits ovarian cancer-reactive antibodies. J Ovarian Res 2024; 17:19. [PMID: 38225646 PMCID: PMC10790439 DOI: 10.1186/s13048-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nattha Ingavat
- Downstream Processing (DSP), Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), Singapore, 138632, Singapore
| | - Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
de Lima MR, Leandro ACCS, de Souza AL, Barradas MM, Roma EH, Fernandes ATG, Galdino-Silva G, Carvalho JKMR, Marchevsky RS, Coelho JMCO, Gonçalves EDC, VandeBerg JL, Silva CL, Bonecini-Almeida MDG. Safety and Immunogenicity of an In Vivo Muscle Electroporation Delivery System for DNA- hsp65 Tuberculosis Vaccine in Cynomolgus Monkeys. Vaccines (Basel) 2023; 11:1863. [PMID: 38140266 PMCID: PMC10747856 DOI: 10.3390/vaccines11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Cristina C. S. Leandro
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Andreia Lamoglia de Souza
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Marcio Mantuano Barradas
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Teresa Gomes Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Gabrielle Galdino-Silva
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Joyce Katiuccia M. Ramos Carvalho
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Renato Sergio Marchevsky
- Laboratory of Neurovirulence, Instituto de Biotecnologia em Imunobiológicos, Biomanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Janice M. C. Oliveira Coelho
- Laboratory of Pathology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | | | - John L. VandeBerg
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Celio Lopes Silva
- Farmacore Biotecnologia Ltda, Ribeirão Preto 14056-680, SP, Brazil; (E.D.C.G.); (C.L.S.)
- Laboratory for Research and Development of Immunobiologicals, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| |
Collapse
|
8
|
Kamensek U, Cemazar M, Kranjc Brezar S, Jesenko T, Kos S, Znidar K, Markelc B, Modic Z, Komel T, Gorse T, Rebersek E, Jakopic H, Sersa G. What We Learned about the Feasibility of Gene Electrotransfer for Vaccination on a Model of COVID-19 Vaccine. Pharmaceutics 2023; 15:1981. [PMID: 37514166 PMCID: PMC10385748 DOI: 10.3390/pharmaceutics15071981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
DNA vaccination is one of the emerging approaches for a wide range of applications, including prophylactic vaccination against infectious diseases and therapeutic vaccination against cancer. The aim of this study was to evaluate the feasibility of our previously optimized protocols for gene electrotransfer (GET)-mediated delivery of plasmid DNA into skin and muscle tissues on a model of COVID-19 vaccine. Plasmids encoding the SARS-CoV-2 proteins spike (S) and nucleocapsid (N) were used as the antigen source, and a plasmid encoding interleukin 12 (IL-12) was used as an adjuvant. Vaccination was performed in the skin or muscle tissue of C57BL/6J mice on days 0 and 14 (boost). Two weeks after the boost, blood, spleen, and transfected tissues were collected to determine the expression of S, N, IL-12, serum interferon-γ, the induction of antigen-specific IgG antibodies, and cytotoxic T-cells. In accordance with prior in vitro experiments that indicated problems with proper expression of the S protein, vaccination with S did not induce S-specific antibodies, whereas significant induction of N-specific antibodies was detected after vaccination with N. Intramuscular vaccination outperformed skin vaccination and resulted in significant induction of humoral and cell-mediated immunity. Moreover, both boost and adjuvant were found to be redundant for the induction of an immune response. Overall, the study confirmed the feasibility of the GET for DNA vaccination and provided valuable insights into this approach.
Collapse
Affiliation(s)
- Urska Kamensek
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Spela Kos
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| | - Ziva Modic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tim Gorse
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Eva Rebersek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Helena Jakopic
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Wilson GJ, Rodriguez B, Li SS, Allen M, Frank I, Rudnicki E, Trahey M, Kalams S, Hannaman D, Clarke DK, Xu R, Egan M, Eldridge J, Pensiero M, Latham T, Ferrari G, Montefiori DC, Tomaras GD, De Rosa SC, Jacobson JM, Miner MD, Elizaga M. Cellular and humoral responses to an HIV DNA prime by electroporation boosted with recombinant vesicular stomatitis virus expressing HIV subtype C Env in a randomized controlled clinical trial. Vaccine 2023; 41:2696-2706. [PMID: 36935288 PMCID: PMC10102555 DOI: 10.1016/j.vaccine.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. TRIAL REGISTRATION CLINICALTRIALS gov: NCT02654080.
Collapse
Affiliation(s)
- Gregory J Wilson
- Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Shuying Sue Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Mary Allen
- DAIDS/NIAID/NIH, Rockville, MD, United States
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, United States
| | - Erika Rudnicki
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Meg Trahey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Spyros Kalams
- Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - David K Clarke
- Auro Vaccines LLC (formerly Profectus Biosciences, Inc.), Pearl River, NY, United States
| | - Rong Xu
- Auro Vaccines LLC (formerly Profectus Biosciences, Inc.), Pearl River, NY, United States
| | - Michael Egan
- Auro Vaccines LLC (formerly Profectus Biosciences, Inc.), Pearl River, NY, United States
| | - John Eldridge
- Auro Vaccines LLC (formerly Profectus Biosciences, Inc.), Pearl River, NY, United States
| | | | - Theresa Latham
- Auro Vaccines LLC (formerly Profectus Biosciences, Inc.), Pearl River, NY, United States
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, NC, United States
| | | | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | | | - Maurine D Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Marnie Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
10
|
Stephan A, Graca FA, Hunt LC, Demontis F. Electroporation of Small Interfering RNAs into Tibialis Anterior Muscles of Mice. Bio Protoc 2022; 12:e4428. [PMID: 35799907 PMCID: PMC9244496 DOI: 10.21769/bioprotoc.4428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
Aging and wasting of skeletal muscle reduce organismal fitness. Regrettably, only limited interventions are currently available to address this unmet medical need. Many methods have been developed to study this condition, including the intramuscular electroporation of DNA plasmids. However, this technique requires surgery and high electrical fields, which cause tissue damage. Here, we report an optimized protocol for the electroporation of small interfering RNAs (siRNAs) into the tibialis anterior muscle of mice. This protocol does not require surgery and, because of the small siRNA size, mild electroporation conditions are utilized. By inducing target mRNA knockdown, this method can be used to interrogate gene function in muscles of mice from different strains, genotypes, and ages. Moreover, a complementary method for siRNA transfection into differentiated myotubes can be used for testing siRNA efficacy before in vivo use. Altogether, this streamlined protocol is instrumental for basic science and translational studies in muscles of mice and other animal models.
Collapse
Affiliation(s)
- Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
,
*For correspondence:
| |
Collapse
|
11
|
Kardani K, Milani A, Bolhassani A. Gene delivery in adherent and suspension cells using the combined physical methods. Cytotechnology 2022; 74:245-257. [PMID: 35464169 PMCID: PMC8975990 DOI: 10.1007/s10616-022-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Physical methods are widely utilized to deliver nucleic acids into cells such as electro-transfection or heat shock. An efficient gene electro-transfection requires the best conditions including voltage, the pulse length or number, buffer, incubation time and DNA form. In this study, the delivery of pEGFP-N1 vector into two adherent cell lines (HEK-293 T and COS-7) with the same origin (epithelial cells), and also mouse bone marrow-derived dendritic cells (DCs) was evaluated using electroporation under different conditions alone and along with heat treatment. Our data showed that the highest green fluorescent protein (GFP) expression in HEK-293 T and COS-7 cells was observed in serum-free RPMI cell culture medium as electroporation buffer, voltage (200 V), the pulse number (2), the pulse length (15 ms), the circular form of DNA, and 48 h after electro-transfection. In addition, the highest GFP expression in DCs was detected in serum-free RPMI, voltage (300 V), the pulse number (1), the pulse length (5 ms), and 48 h after electro-transfection. The use of sucrose as electroporation buffer, the pulse number (2), and the pulse length (25 ms) led to further cytotoxicity and lower transfection in HEK293T and COS-7 cells than other conditions. Moreover, the high voltage (700 V) increased the cell cytotoxicity, and decreased electro-transfection efficiency in DCs. On the other hand, the best conditions of electroporation along with heat treatment could significantly augment the transfection efficiency in all the cells. These data will be useful for gene delivery in other cells with the same properties using physical methods. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00524-4.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Meglič SH, Pavlin M. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model. Biomed Eng Online 2021; 20:85. [PMID: 34419072 PMCID: PMC8379608 DOI: 10.1186/s12938-021-00922-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene electrotransfer is an established method that enables transfer of DNA into cells with electric pulses. Several studies analyzed and optimized different parameters of gene electrotransfer, however, one of main obstacles toward efficient electrotransfection in vivo is relatively poor DNA mobility in tissues. Our aim was to analyze the effect of impaired mobility on gene electrotransfer efficiency experimentally and theoretically. We applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. In order to analyze the effect of impaired mobility on gene electrotransfer efficiency, we applied electric pulses with different durations on plated cells, cells grown on collagen layer and cells embedded in collagen gel (3D model) and analyzed gene electrotransfer efficiency. Results We obtained the highest transfection in plated cells, while transfection efficiency of embedded cells in 3D model was lowest, similarly as in in vivo. To further analyze DNA diffusion in 3D model, we applied DNA on top or injected it into 3D model and showed, that for the former gene electrotransfer efficiency was similarly as in in vivo. The experimental results are explained with theoretical analysis of DNA diffusion and electromobility. Conclusion We show, empirically and theoretically that DNA has impaired electromobility and especially diffusion in collagen environment, where the latter crucially limits electrotransfection. Our model enables optimization of gene electrotransfer in in vitro conditions.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia. .,Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|