1
|
O’Connor PM, Cotter PD, Hill C, Ross RP. Bactofencin A Displays a Delayed Killing Effect on a Clinical Strain of Staphylococcus aureus Which Is Greatly Accelerated in the Presence of Nisin. Antibiotics (Basel) 2025; 14:184. [PMID: 40001428 PMCID: PMC11851555 DOI: 10.3390/antibiotics14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/objectives: Bacteriocins can be considered a novel source of natural alternatives to antibiotics or chemical food additives with the potential to fight against clinical and food pathogens. A number have already been commercialised as food preservatives, but they also have the potential to treat drug-resistant clinical pathogens and can play a role in immune modulation. To achieve their full potential, an understanding of their mode of action is required. Methods: Bactofencin A and nisin A were purified to homogeneity by reversed-phase HPLC and their effect on the mastitis pathogen Staphylococcus aureus DPC5246 was assessed by cell viability assays and flow cytometry. Results: We report that bactofencin A displays a delayed inhibitory effect against the mastitis pathogen, Staphylococcus aureus DPC5246, suggesting an unusual mode of action. This characteristic was clearly visible on BHI plate media, where formation of inhibition zones against the staphylococcal strain took 23 h compared to 6 h for the well-characterised nisin. This delayed killing and injury was also demonstrated using flow cytometry, where damage was evident 4 h after bacteriocin addition. Treatment with 2 μM bactofencin A resulted in approximately 20-fold higher numbers of injured and 50-fold higher numbers of dead cells when compared to untreated cells. Combining bactofencin A with the lantibiotic nisin A resulted in faster killing at lower bacteriocin concentrations. When combined in an equal ratio, the combination exhibited a 4-fold increase in inhibition compared to nisin A alone. These results demonstrate that the combination may be very effective in therapeutic applications against pathogenic staphylococci.
Collapse
Affiliation(s)
- Paula M. O’Connor
- Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996 Fermoy, Ireland; (P.M.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Co. Cork, P61 C996 Fermoy, Ireland; (P.M.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
2
|
Xu L, Zhang X, Wang W, Shen J, Ma K, Wang H, Xue T. The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus. Int J Food Microbiol 2025; 428:110997. [PMID: 39616895 DOI: 10.1016/j.ijfoodmicro.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Staphylococcus aureus (S. aureus) is a primary culprit of food poisoning. As a highly adaptable pathogen, S. aureus demonstrates formidable biofilm-forming and stress tolerance capabilities, inducing significant challenges to eradicate food contamination caused by this organism. SpoVG, a regulatory protein in S. aureus, controls the expression of numerous genes. However, its role in biofilm formation and stress response in foodborne S. aureus remains to be elucidated. In this study, we investigated the functions of SpoVG involved in food-related stress responses and biofilm formation in S. aureus RMSA50. The results demonstrated that SpoVG deletion enhanced biofilm formation and resistance to heat and desiccation, while decreased tolerance to oxidative stress. Further analysis revealed that cell aggregation and the accumulation of extracellular DNA (eDNA) may contribute to the enhanced biofilm formation. Real-time quantitative reverse transcription-PCR (RT-qPCR) revealed that the expression levels of nuc and sasC, which are related to cell aggregation and eDNA concentration, were significantly altered in the spoVG mutant. Electrophoretic mobility shift assays (EMSA) confirmed that SpoVG directly binds to the promoter region of nuc and sasC to regulate their expression. These findings suggest that SpoVG may serve as a target to decrease biofilm formation and control S. aureus contamination in the food industry.
Collapse
Affiliation(s)
- Li Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institude, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Rasheed H, Ijaz M, Ahmed A, Ali MM. Antimicrobial resistance, virulence profiling, and drug repurposing analysis of Staphylococcus aureus from camel mastitis. Vet Res Commun 2024; 49:59. [PMID: 39731665 DOI: 10.1007/s11259-024-10628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S. aureus isolates from subclinical mastitis in camels. A total of 384 milk samples were collected and submitted to isolate S. aureus. The S. aureus isolates exhibiting resistance to Penicillin and Cefoxitin disc on Kirby-Bauer disc diffusion method were considered as β-lactam resistant S. aureus (BRSA) and methicillin-resistant S. aureus (MRSA) which were further confirmed by PCR targeting blaZ and mecA genes, respectively. The results showed that S. aureus was found in 57.06% of subclinical (SCM) positive camel milk samples. A high molecular prevalence of BRSA and MRSA were found to be 48.51% and 46.53% respectively depicting that treating these infections is challenging due to their high resistance levels. The phylogenetic analysis revealed a significant resemblance of the study isolates with each other and with already reported sequences from different countries which shows the potential for the spread of pathogen. Virulence profiling of antibiotic resistance strains showed the presence of virulence markers (nuc and coag genes), intercellular adhesion genes (icaA, icaD), Panton-Valentine leukocidin (pvl) gene, and enterotoxin-producing genes including sea, seb, sec, and sed. In-vitro antibiotic susceptibility testing revealed that the most resistant antibiotic group was penicillin followed by aminoglycosides and cephalosporins. Drug repurposing analysis of different non-antibiotics for combination therapies with resistant antibiotics was done to combat the S. aureus isolates harboring the mecA and blaZ genes. The results revealed the synergistic effect of amoxicillin, sulfamethoxazole, gentamicin, and doxycycline with ketoprofen, amikacin with flunixin meglumine, and gentamicin with N-acetylcysteine (NAC) against study isolates. The current investigation provides the status of antibiotic-resistant strains and virulence factors of S. aureus in the udder of dromedary camels. The combinational therapy of resistant antibiotics with non-antibiotics provides a potential therapeutic option for the treatment of resistant strains.
Collapse
Affiliation(s)
- Hamza Rasheed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Arslan Ahmed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Javed MU, Ijaz M, Durrani AZ, Ali MM. Molecular insights into antimicrobial resistant Staphylococcus aureus strains: A potential zoonosis of goat origin. Microb Pathog 2024; 196:106961. [PMID: 39307195 DOI: 10.1016/j.micpath.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Antimicrobial-resistant (AMR) Staphylococcus aureus (S. aureus) strains have attained global attention due to their life-threatening zoonotic nature. Being a member of ESKAPE group, S. aureus has an ability to escape the biocidal action of antimicrobial drugs. The current study investigated the prevalence and molecular characterization of methicillin-resistant S. aureus (MRSA), β-lactam-resistant S. aureus (BRSA), aminoglycoside-resistant S. aureus (ARSA), tetracycline-resistant S. aureus (TRSA), and fluoroquinolones-resistant S. aureus (FRSA) associated with goat subclinical mastitis (SCM). Furthermore, the antimicrobial resistance and susceptibility profile of various antibiotics and non-antibiotics (NSAIDs, nisin, N-acetylcysteine, vitamin-C) along with their possible role in modulating the antibiotic resistance of MDR isolates was also investigated. A total of 768 goat milk samples were subjected to California mastitis test for SCM followed by bacteriological and molecular characterization of S. aureus. Moreover, in-vitro susceptibility of resistant antibiotics, non-antibiotics, and their combination against MDR S. aureus were conducted through well diffusion and broth microdilution assays. The results depicted that 55.47 % and 26.82 % of milk samples were positive for SCM and S. aureus, respectively. The molecular assay confirmed 35.92 % of isolates as MRSA, 45.63 % as BRSA, 50.49 % as ARSA, and 32.52 % but no isolate was confirmed as FRSA on molecular basis. The multidrug resistance was observed in 62.13 % and 47.09 % isolates, respectively. Molecular characterized MDR S. aureus revealed high homology of study isolates with the isolates of neighboring countries like India, Korea, Iran, and China. Antimicrobial susceptibility trials on well diffusion assay showed higher efficacy of different non-antibiotics with resistant antibiotics as penicillin with ketoprofen and gentamicin with flunixin meglumine while oxytetracycline with N-acetylcystiene. The synergy testing by checkerboard assay revealed synergistic activity of penicillin with ketoprofen, gentamicin with flunixin meglumine, and oxytetracycline with N-acetylcysteine. The current study highlighted the emergence and spread of AMR S. aureus strains from goat SCM and provided insights into possible drug repurposing of various non-antibiotics to modulate the multidrug resistance of S. aureus which will be helpful in devising the therapeutic options and control measures for this pathogen.
Collapse
Affiliation(s)
- Muhammad Umar Javed
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Aneela Zameer Durrani
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Ferreira M, Pinto M, Aires-da-Silva F, Bettencourt A, Gaspar MM, Aguiar SI. Rifabutin: a repurposed antibiotic with high potential against planktonic and biofilm staphylococcal clinical isolates. Front Microbiol 2024; 15:1475124. [PMID: 39450290 PMCID: PMC11499150 DOI: 10.3389/fmicb.2024.1475124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Staphylococcus aureus poses a significant threat as an opportunistic pathogen in humans, and animal medicine, particularly in the context of hospital-acquired infections (HAIs). Effective treatment is a significant challenge, contributing substantially to the global health burden. While antibiotic therapy remains the primary approach for staphylococcal infections, its efficacy is often compromised by the emergence of resistant strains and biofilm formation. The anticipated solution is the discovery and development of new antibacterial agents. However, this is a time consuming and expensive process with limited success rates. One potential alternative for addressing this challenge is the repurposing of existing antibiotics. This study investigated the potential of rifabutin (RFB) as a repurposed antibiotic for treating S. aureus infections. The minimum inhibitory concentration (MIC) of rifabutin was assessed by the broth microdilution method, in parallel to vancomycin, against 114 clinical isolates in planktonic form. The minimum biofilm inhibitory concentration (MBIC50) was determined by an adaptation of the broth microdilution method, followed by MTT assay, against a subset of selected 40 clinical isolates organized in biofilms. The study demonstrated that RFB MIC ranged from 0.002 to 6.250 μg/mL with a MIC50 of 0.013 μg/mL. RFB also demonstrated high anti-biofilm activity in the subset of 40 clinical isolates, with confirmed biofilm formation, with no significant MBIC50 differences observed between the MSSA and MRSA strains, in contrast to that observed for the VAN. These results highlight the promising efficacy of RFB against staphylococcal clinical isolates with different resistance patterns, whether in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Magda Ferreira
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Pinto
- Laboratório de Microbiologia do Serviço de Patologia Clínica do Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
- Faculty of Sciences, Institute of Biophysics and Biomedical Engineering (IBEB), Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Isabel Aguiar
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT. Nisin variants: What makes them different and unique? Peptides 2024; 177:171220. [PMID: 38636811 DOI: 10.1016/j.peptides.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.
Collapse
Affiliation(s)
| | | | | | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Sona Jain
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
7
|
Sharafi T, Ghaemi EA, Rafiee M, Ardebili A. Combination antimicrobial therapy: in vitro synergistic effect of anti-staphylococcal drug oxacillin with antimicrobial peptide nisin against Staphylococcus epidermidis clinical isolates and Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 2024; 23:7. [PMID: 38245727 PMCID: PMC10800071 DOI: 10.1186/s12941-024-00667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.
Collapse
Affiliation(s)
- Toktam Sharafi
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezzat Allah Ghaemi
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Rafiee
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdollah Ardebili
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Panina IS, Balandin SV, Tsarev AV, Chugunov AO, Tagaev AA, Finkina EI, Antoshina DV, Sheremeteva EV, Paramonov AS, Rickmeyer J, Bierbaum G, Efremov RG, Shenkarev ZO, Ovchinnikova TV. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int J Mol Sci 2023; 24:ijms24021332. [PMID: 36674846 PMCID: PMC9863751 DOI: 10.3390/ijms24021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.
Collapse
Affiliation(s)
- Irina S. Panina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-495-335-0900
| | - Andrey V. Tsarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anton O. Chugunov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daria V. Antoshina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira V. Sheremeteva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S. Paramonov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jasmin Rickmeyer
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Roman G. Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Zakhar O. Shenkarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
10
|
Perrella SL, Anderton-May EL, McLoughlin G, Lai CT, Simmer KN, Geddes DT. Human Milk Sodium and Potassium as Markers of Mastitis in Mothers of Preterm Infants. Breastfeed Med 2022; 17:1003-1010. [PMID: 36378839 DOI: 10.1089/bfm.2022.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: This prospective longitudinal study examined changes in milk sodium concentration (Na) and sodium:potassium ratio (Na:K), microbiological culture, milk production, and breast health in relation to mastitis after preterm birth. Methods: We studied women who gave birth at 29-34 weeks of gestation in a tertiary obstetric hospital in Perth, Western Australia. Milk samples, 24-hour milk production, and breast health data were collected every second day to day 10 postpartum, then every third day until infant discharge from the neonatal unit. Milk Na and K were measured at point of care (POC) using handheld ion selective meters, and Na:K calculated. Cultures were performed on postnatal days 8, 13, and every 6 days thereafter. For episodes of mastitis, milk was cultured at onset, and Na and Na:K measured daily until resolution. Women were followed up at 4 and 8 weeks postpartum. Results: In a sample of 44 women, 4 mastitis cases were detected in 3 women during their infants' neonatal stay; all had elevated milk Na and Na:K that resolved within 48 hours; 2/4 experienced reduced milk production and 1/4 had heavy growth of Staphylococcus epidermidis. A further 2 mastitis cases were reported in 39 women followed up to 8 weeks postpartum. Four women had elevated milk Na and Na:K without clinical signs of mastitis; three also had reduced milk production. Conclusions: POC testing of milk Na and/or Na:K may offer a useful indicator of breast health. Mastitis may cause an acute reduction in milk production regardless of the presence of culture-positive infection.
Collapse
Affiliation(s)
- Sharon Lisa Perrella
- School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Emma-Lee Anderton-May
- Neonatology Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Grace McLoughlin
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ching Tat Lai
- School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karen Norrie Simmer
- Neonatology Clinical Care Unit, King Edward Memorial Hospital, Subiaco, Western Australia, Australia.,School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donna Tracy Geddes
- School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Sahoo A, Swain SS, Panda SK, Hussain T, Panda M, Rodrigues CF. In Silico Identification of Potential Insect Peptides against Biofilm-Producing Staphylococcus aureus. Chem Biodivers 2022; 19:e202200494. [PMID: 36198620 DOI: 10.1002/cbdv.202200494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Biofilm-producing Staphylococcus aureus (SA) strains are frequently found in medical environments, from surgical/ wound sites, medical devices. These biofilms reduce the efficacy of applied antibiotics during the treatment of several infections, such as cystic fibrosis, endocarditis, or urinary tract infections. Thus, the development of potential therapeutic agents to destroy the extra protective biofilm layers or to inhibit the biofilm-producing enzymes is urgently needed. Advanced and cost-effective bioinformatics tools are advantageous in locating and speeding up the selection of antibiofilm candidates. Based on the potential drug characteristics, we have selected one-hundred thirty-three antibacterial peptides derived from insects to assess for their antibiofilm potency via molecular docking against five putative biofilm formation and regulated target enzymes: the staphylococcal accessory regulator A or SarA (PDB ID: 2FRH), 4,4'-diapophytoene synthase or CrtM (PDB ID: 2ZCQ), clumping factor A or ClfA (PDB ID: 1N67) and serine-aspartate repeat protein C or SdrC (PDB ID: 6LXH) and sortase A or SrtA (PDB ID: 1T2W) of SA bacterium. In this study, molecular docking was performed using HPEPDOCK and HDOCK servers, and molecular interactions were examined using BIOVIA Discovery Studio Visualizer-2019. The docking score (kcal/mol) range of five promising antibiofilm peptides against five targets was recorded as follows: diptericin A (-215.52 to -303.31), defensin (-201.11 to -301.92), imcroporin (-212.08 to -287.64), mucroporin (-228.72 to -286.76), apidaecin II (-203.90 to -280.20). Among these five, imcroporin and mucroporin were 13 % each, while defensin contained only 1 % of positive net charged residues (Arg+Lys) projected through ProtParam and NetWheels tools. Similarly, imcroporin, mucroporin and apidaecin II were 50 %, while defensin carried 21.05 % of hydrophobic residues predicted by the tool PEPTIDE. 2.0. Most of the peptides exhibited potential characteristics to inhibit S. aureus-biofilm formation via disrupting the cell membrane and cytoplasmic integrity. In summary, the proposed hypothesis can be considered a cost-effective platform for selecting the most promising bioactive drug candidates within a limited timeframe with a greater chance of success in experimental and clinical studies.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751023 1, India
| | - Shasank S Swain
- Division of Microbiology and NCDs, ICMR-, Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Sujogya K Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-, Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751023 1, India
| | - Célia F Rodrigues
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário - CESPU, 4585-116 Gandra PRD, Portugal.,LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal.,AliCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
12
|
Le MNT, Kawada-Matsuo M, Komatsuzawa H. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front Microbiol 2022; 13:930629. [PMID: 35756032 PMCID: PMC9218695 DOI: 10.3389/fmicb.2022.930629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics play a vital role in saving millions of lives from fatal infections; however, the inappropriate use of antibiotics has led to the emergence and propagation of drug resistance worldwide. Multidrug-resistant bacteria represent a significant challenge to treating infections due to the limitation of available antibiotics, necessitating the investigation of alternative treatments for combating these superbugs. Under such circumstances, antimicrobial peptides (AMPs), including human-derived AMPs and bacteria-derived AMPs (so-called bacteriocins), are considered potential therapeutic drugs owing to their high efficacy against infectious bacteria and the poor ability of these microorganisms to develop resistance to them. Several staphylococcal species including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus saprophyticus are commensal bacteria and known to cause many opportunistic infectious diseases. Methicillin-resistant Staphylococci, especially methicillin-resistant S. aureus (MRSA), are of particular concern among the critical multidrug-resistant infectious Gram-positive pathogens. Within the past decade, studies have reported promising AMPs that are effective against MRSA and other methicillin-resistant Staphylococci. This review discusses the sources and mechanisms of AMPs against staphylococcal species, as well as their potential to become chemotherapies for clinical infections caused by multidrug-resistant staphylococci.
Collapse
Affiliation(s)
- Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Zhang K, Xiang Y, Peng Y, Tang F, Cao Y, Xing Z, Li Y, Liao X, Sun Y, He Y, Ye Q. Influence of Fluoride-Resistant Streptococcus mutans Within Antagonistic Dual-Species Biofilms Under Fluoride In Vitro. Front Cell Infect Microbiol 2022; 12:801569. [PMID: 35295758 PMCID: PMC8918626 DOI: 10.3389/fcimb.2022.801569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The widespread application of fluoride, an extremely effective caries prevention agent, induces the generation of fluoride-resistant strains of opportunistic cariogenic bacteria such as fluoride-resistant Streptococcus mutans (S. mutans). However, the influence of this fluoride-resistant strain on oral microecological homeostasis under fluoride remains unknown. In this study, an antagonistic dual-species biofilm model composed of S. mutans and Streptococcus sanguinis (S. sanguinis) was used to investigate the influence of fluoride-resistant S. mutans on dual-species biofilm formation and pre-formed biofilms under fluoride to further elucidate whether fluoride-resistant strains would influence the anti-caries effect of fluoride from the point of biofilm control. The ratio of bacteria within dual-species biofilms was investigated using quantitative real-time PCR and fluorescence in situ hybridization. Cristal violet staining, scanning electron microscopy imaging, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay were used to evaluate biofilm biomass, biofilm structure, and metabolic activity, respectively. Biofilm acidogenicity was determined using lactic acid and pH measurements. The anthrone method and exopolysaccharide (EPS) staining were used to study the EPS production of biofilms. We found that, in biofilm formation, fluoride-resistant S. mutans occupied an overwhelming advantage in dual-species biofilms under fluoride, thus showing more biofilm biomass, more robust biofilm structure, and stronger metabolic activity (except for 0.275 g/L sodium fluoride [NaF]), EPS production, and acidogenicity within dual-species biofilms. However, in pre-formed biofilms, the advantage of fluoride-resistant S. mutans could not be fully highlighted for biofilm formation. Therefore, fluoride-resistant S. mutans could influence the anti-caries effect of fluoride on antagonistic dual-species biofilm formation while being heavily discounted in pre-formed biofilms from the perspective of biofilm control.
Collapse
Affiliation(s)
- Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Youjian Peng
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengyu Tang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanfan Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|
14
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
16
|
Madi-Moussa D, Belguesmia Y, Charlet A, Drider D, Coucheney F. Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antibiotics (Basel) 2021; 11:20. [PMID: 35052897 PMCID: PMC8772908 DOI: 10.3390/antibiotics11010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Audrey Charlet
- Centre Hospitalier de Lille, Centre de Biologie Pathologie, Laboratoire de Bactériologie, F-59000 Lille, France;
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| |
Collapse
|
17
|
Jesus C, Soares R, Cunha E, Grilo M, Tavares L, Oliveira M. Influence of Nisin-Biogel at Subinhibitory Concentrations on Virulence Expression in Staphylococcus aureus Isolates from Diabetic Foot Infections. Antibiotics (Basel) 2021; 10:antibiotics10121501. [PMID: 34943712 PMCID: PMC8698857 DOI: 10.3390/antibiotics10121501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/22/2023] Open
Abstract
A new approach to diabetic foot infections (DFIs) has been investigated, using a nisin-biogel combining the antimicrobial peptide (AMP) nisin with the natural polysaccharide guar-gum. Since in in vivo conditions bacteria may be exposed to decreased antimicrobial concentrations, known as subinhibitory concentrations (sub-MICs), effects of nisin-biogel sub-MIC values corresponding to 1/2, 1/4 and 1/8 of nisin's minimum inhibitory concentration (MIC) on virulence expression by six Staphylococcus aureus DFI isolates was evaluated by determining bacteria growth rate; expression of genes encoding for staphylococcal protein A (spA), coagulase (coa), clumping factor A (clfA), autolysin (atl), intracellular adhesin A (icaA), intracellular adhesin D (icaD), and the accessory gene regulator I (agrI); biofilm formation; Coa production; and SpA release. Nisin-biogel sub-MICs decreased bacterial growth in a strain- and dose-dependent manner, decreased agrI, atl and clfA expression, and increased spA, coa, icaA and icaD expression. Biofilm formation increased in the presence of nisin-biogel at 1/4 and 1/8 MIC, whereas 1/2 MIC had no effect. Finally, nisin-biogel at sub-MICs did not affect coagulase production, but decreased SpA production in a dose-dependent manner. Results highlight the importance of optimizing nisin-biogel doses before proceeding to in vivo trials, to reduce the risk of virulence factor's up-regulation due to the presence of inappropriate antimicrobial concentrations.
Collapse
|
18
|
Susceptibility to Nisin, Bactofencin, Pediocin and Reuterin of Multidrug Resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis Causing Bovine Mastitis. Antibiotics (Basel) 2021; 10:antibiotics10111418. [PMID: 34827356 PMCID: PMC8614789 DOI: 10.3390/antibiotics10111418] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are the most effective strategy to prevent and treat intramammary infections. However, their misuse has led to the dissemination of multidrug resistant bacteria (MDR) for both animals and humans. Efforts to develop new alternative strategies to control bacterial infections related to MDR are continuously on the rise. The objective of this study was to evaluate the antimicrobial activity of different bacteriocins and reuterin against MDR Staphylococcus and Streptococcus clinical isolates involved in bovine mastitis. A bacterial collection including S. aureus (n = 19), S. dysgalactiae (n = 17) and S. uberis (n = 19) was assembled for this study. Antibiotic resistance profiles were determined by the disk diffusion method. In addition, sensitivity to bacteriocins and reuterin was evaluated by determining minimum inhibitory concentrations (MIC). A total of 21 strains (37.5%) were MDR. MICs ranged from ≤1.0 μg/mL to ≥100 μg/mL for nisin and 2.0 to ≥250 μg/mL for bactofencin. Reuterin was active against all tested bacteria, and MICs vary between 70 and 560 μg/mL. Interestingly, 20 MDR strains were inhibited by bactofencin at a concentration of ≤250 μg/mL, while 14 were inhibited by nisin at an MIC of ≤100 μg/mL. Pediocin did not show an inhibitory effect.
Collapse
|
19
|
Kou X, Cai H, Huang S, Ni Y, Luo B, Qian H, Ji H, Wang X. Prevalence and Characteristics of Staphylococcus aureus Isolated From Retail Raw Milk in Northern Xinjiang, China. Front Microbiol 2021; 12:705947. [PMID: 34434176 PMCID: PMC8381379 DOI: 10.3389/fmicb.2021.705947] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the main pathogens causing mastitis in dairy animals worldwide. It is an important opportunistic pathogen of raw milk, and the enterotoxin causes significant food poisoning. Monitoring the antibiotic resistance of S. aureus in raw milk is helpful for a risk assessment of S. aureus. In this study, 62 strains (43.1%) of S. aureus were isolated from 144 retail raw milk samples of different varieties from four regions in northern Xinjiang, China. Among them, the isolation rates at Shihezi, Hami, Altay, and Tacheng were 58.1% (54/93), 12.9% (4/31), 18.2% (2/11), and 22.2% (2/9), respectively. The isolation rate of positive strains in cow milk samples was the highest (61.7%, 37/60), followed by camel milk (35.9%, 23/64), and horse milk (10.0%, 2/20). The results of the classical virulence genes test showed that 12.9% (8/62) of the isolates carried at least one virulence gene. The main genotype was see (6.5%, 4/62), followed by sea+sec (3.2%, 2/62), sea (1.6%, 1/62), and sec (1.6%, 1/62). The analysis of 13 resistance genes and the susceptibility to 12 different antibiotics of 62 isolates showed that 80.6% (50/62) of the strains were resistant to at least one antibiotic, and 46.8% (29/62) were resistant to three or more antibiotics. The isolated strains had the highest resistance rate to penicillin (72.6%, 45/62), and 25.8% (16/62) of the isolates carried the blaZ resistance gene. In addition, 32 strains (51.6%, 32/62) of methicillin-resistant S. aureus were detected. All isolates had the ability to form biofilms. The pulsed-field gel electrophoresis results showed that the 47 isolates revealed 13 major pulsotypes (P1–P13) and 26 subtypes with 80% similarity, indicating the overall genetic diversity in the distribution area and sources of the samples. These findings indicate that S. aureus causes serious pollution of raw milk in northern Xinjiang, which has a negative effect on public health. Therefore, control measures and continuous monitoring should be undertaken to ensure the quality and safety of raw milk.
Collapse
Affiliation(s)
- Xiaomeng Kou
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Huixue Cai
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Shudi Huang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Hao Qian
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xingyi Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Abstract
Antimicrobial peptides are evolving as novel therapeutic options against the increasing problem of multidrug-resistant microorganisms, and nisin is one such avenue. However, some bacteria possess a specific nisin resistance system (NSR), which cleaves the peptide reducing its bactericidal efficacy. NSR-based resistance was identified in strains of Streptococcus uberis, a ubiquitous pathogen that causes mastitis in dairy cattle. Previous studies have demonstrated that a nisin A derivative termed nisin PV, featuring S29P and I30V, exhibits enhanced resistance to proteolytic cleavage by NSR. Our objective was to investigate the ability of this nisin derivative to eradicate and inhibit biofilms of S. uberis DPC 5344 and S. uberis ATCC 700407 (nsr+) using crystal violet (biomass), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) (viability) assays, and confocal microscopy (viability and architecture). When preestablished biofilms were assessed, both peptides reduced biofilm biomass by over 60% compared to that of the untreated controls. However, a 42% higher reduction in viability was observed following treatment with nisin PV compared to that of nisin A. Accordingly, confocal microscopy analysis revealed significantly more dead cells on the biofilm upper surface and a reduced thickness following treatment with nisin PV. When biofilm inhibition was assessed, nisin PV inhibited biofilm formation and decreased viability up to 56% and 85% more than nisin A, respectively. Confocal microscopy analysis revealed a lack of biofilm for S. uberis ATCC 700407 and only dead cells for S. uberis DPC 5344. These results suggest that nisin PV is a promising alternative to effectively reduce the biofilm formation of S. uberis strains carrying NSR. IMPORTANCE One of the four most prevalent species of bovine mastitis-causing pathogens is S. uberis. Its ability to form biofilms confers on the bacteria greater resistance to antibiotics, requiring higher doses to be more effective. In a bid to limit antibiotic resistance development, the need for alternative antimicrobials is paramount. Bacteriocins such as nisin represent one such alternative that could alleviate the impact of mastitis caused by S. uberis. However, many strains of S. uberis have been shown to possess nisin resistance determinants, such as the nisin resistance protein (NSR). In this study, we demonstrate the ability of nisin and a nisin derivative termed PV that is insensitive to NSR to prevent and remove biofilms of NSR-producing S. uberis strains. These findings will add new information to the antimicrobial bacteriocins and control of S. uberis research fields specifically in relation to biofilms and nsr+ mastitis-associated strains.
Collapse
|
21
|
Barbosa AAT, de Melo MR, da Silva CMR, Jain S, Dolabella SS. Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Crit Rev Microbiol 2021; 47:376-385. [PMID: 33689548 DOI: 10.1080/1040841x.2021.1893264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application.
Collapse
Affiliation(s)
| | | | | | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Sergipe, Brasil
| | - Silvio Santana Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Brasil
| |
Collapse
|
22
|
Kİlİc T. Biofilm-Forming Ability and Effect of Sanitation Agents on Biofilm-Control of Thermophile Geobacillus sp. D413 and Geobacillus toebii E134. Pol J Microbiol 2021; 69:411-419. [PMID: 33574869 PMCID: PMC7812365 DOI: 10.33073/pjm-2020-042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/12/2023] Open
Abstract
Geobacillus sp. D413 and Geobacillus toebii E134 are aerobic, non-pathogenic, endospore-forming, obligately thermophilic bacilli. Gram-positive thermophilic bacilli can produce heat-resistant spores. The bacteria are indicator organisms for assessing the manufacturing process’s hygiene and are capable of forming biofilms on surfaces used in industrial sectors. The present study aimed to determine the biofilm-forming properties of Geobacillus isolates and how to eliminate this formation with sanitation agents. According to the results, extracellular DNA (eDNA) was interestingly not affected by the DNase I, RNase A, and proteinase K. However, the genomic DNA (gDNA) was degraded by only DNase I. It seemed that the eDNA had resistance to DNase I when purified. It is considered that the enzymes could not reach the target eDNA. Moreover, the eDNA resistance may result from the conserved folded structure of eDNA after purification. Another assumption is that the eDNA might be protected by other extracellular polymeric substances (EPS) and/or extracellular membrane vesicles (EVs) structures. On the contrary, DNase I reduced unpurified eDNA (mature biofilms). Biofilm formation on surfaces used in industrial areas was investigated in this work: the D413 and E134 isolates adhered to all surfaces. Various sanitation agents could control biofilms of Geobacillus isolates. The best results were provided by nisin for D413 (80%) and α-amylase for E134 (98%). This paper suggests that sanitation agents could be a solution to control biofilm structures of thermophilic bacilli.
Collapse
Affiliation(s)
- Tugba Kİlİc
- Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey.,Vocational School of Health Services, Medical Laboratory Techniques Program, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Karczewski J, Krasucki SP, Asare-Okai PN, Diehl C, Friedman A, Brown CM, Maezato Y, Streatfield SJ. Isolation, Characterization and Structure Elucidation of a Novel Lantibiotic From Paenibacillus sp. Front Microbiol 2020; 11:598789. [PMID: 33324379 PMCID: PMC7721686 DOI: 10.3389/fmicb.2020.598789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
We have isolated and characterized a novel antibacterial peptide, CMB001, following an extensive screening effort of bacterial species isolated from diverse environmental sources. The bacterium that produces CMB001 is characterized as a Gram (+) bacillus sharing approximately 98.9% 16S rRNA sequence homology with its closest match, Paenibacillus kyungheensis. The molecule has been purified to homogeneity from its cell-free supernatant by a three-step preparative chromatography process. Based on its primary structure, CMB001 shares 81% identity with subtilin and 62% with nisin. CMB001 is active mainly against Gram-positive bacteria and Mycobacteriaceae but it is also active against certain Gram-negative bacteria, including multi-drug resistant Acinetobacter baumannii. It retains full antibacterial activity at neutral pH and displays a low propensity to select for resistance among targeted bacteria. Based on NMR and mass spectrometry, CMB001 forms a unique 3D-structure comprising of a compact backbone with one α-helix and two pseudo-α-helical regions. Screening the structure against the Protein Data Bank (PDB) revealed a partial match with nisin-lipid II (1WCO), but none of the lantibiotics with known structures showed significant structural similarity. Due to its unique structure, resistance profile, relatively broad spectrum and stability under physiological conditions, CMB001 is a promising drug candidate for evaluation in animal models of bacterial infection.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Stephen P Krasucki
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | | | - Andrew Friedman
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Christine M Brown
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Yukari Maezato
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | | |
Collapse
|
24
|
Boix-Amorós A, Hernández-Aguilar MT, Artacho A, Collado MC, Mira A. Human milk microbiota in sub-acute lactational mastitis induces inflammation and undergoes changes in composition, diversity and load. Sci Rep 2020; 10:18521. [PMID: 33116172 PMCID: PMC7595153 DOI: 10.1038/s41598-020-74719-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023] Open
Abstract
Sub-acute mastitis (SAM) is a prevalent disease among lactating women, being one of the main reasons for early weaning. Although the etiology and diagnosis of acute mastitis (AM) is well established, little is known about the underlying mechanisms causing SAM. We collected human milk samples from healthy and SAM-suffering mothers, during the course of mastitis and after symptoms disappeared. Total (DNA-based) and active (RNA-based) microbiota were analysed by 16S rRNA gene sequencing and qPCR. Furthermore, mammary epithelial cell lines were exposed to milk pellets, and levels of the pro-inflammatory interleukin IL8 were measured. Bacterial load was significantly higher in the mastitis samples and decreased after clinical symptoms disappeared. Bacterial diversity was lower in SAM milk samples, and differences in bacterial composition and activity were also found. Contrary to AM, the same bacterial species were found in samples from healthy and SAM mothers, although at different proportions, indicating a dysbiotic ecological shift. Finally, mammary epithelial cell exposure to SAM milk pellets showed an over-production of IL8. Our work therefore supports that SAM has a bacterial origin, with increased bacterial loads, reduced diversity and altered composition, which partly recovered after treatment, suggesting a polymicrobial and variable etiology.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Biotechnology, Spanish National Research Council (IATA-CSIC), Institute of Agrochemistry and Food Technology, Paterna, Spain
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | | | - Alejandro Artacho
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Spanish National Research Council (IATA-CSIC), Institute of Agrochemistry and Food Technology, Paterna, Spain
| | - Alex Mira
- Department of Biotechnology, Spanish National Research Council (IATA-CSIC), Institute of Agrochemistry and Food Technology, Paterna, Spain.
| |
Collapse
|
25
|
Broadening and Enhancing Bacteriocins Activities by Association with Bioactive Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217835. [PMID: 33114656 PMCID: PMC7663325 DOI: 10.3390/ijerph17217835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Bacteriocins are antimicrobial peptides some of which are endowed with antiviral, anticancer and antibiofilm properties. These properties could be improved through synergistic interactions of these bacteriocins with other bioactive molecules such as antibiotics, phages, nanoparticles and essential oils. A number of studies are steadily reporting the effects of these combinations as new and potential therapeutic strategies in the future, as they may offer many incentives over existing therapies. In particular, bacteriocins can benefit from combination with nanoparticles which can improve their stability and solubility, and protect them from enzymatic degradation, reduce their interactions with other molecules and improve their bioavailability. Furthermore, the combination of bacteriocins with other antimicrobials is foreseen as a way to reduce the development of antibiotic resistance due to the involvement of several modes of action. Another relevant advantage of these synergistic combinations is that it decreases the concentration of each antimicrobial component, thereby reducing their side effects such as their toxicity. In addition, combination can extend the utility of bacteriocins as antiviral or anticancer agents. Thus, in this review, we report and discuss the synergistic effects of bacteriocin combinations as medicines, and also for other diverse applications including, antiviral, antispoilage, anticancer and antibiofilms.
Collapse
|