1
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Chen JR, Aguirre-Carvajal K, Xue DY, Chang HC, Arone-Maxwell L, Lin YP, Armijos-Jaramillo V, Oliva R. Exploring the genetic makeup of Xanthomonas species causing bacterial spot in Taiwan: evidence of population shift and local adaptation. Front Microbiol 2024; 15:1408885. [PMID: 38846563 PMCID: PMC11153759 DOI: 10.3389/fmicb.2024.1408885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The introduction of plant pathogens can quickly reshape disease dynamics in island agro-ecologies, representing a continuous challenge for local crop management strategies. Xanthomonas pathogens causing tomato bacterial spot were probably introduced in Taiwan several decades ago, creating a unique opportunity to study the genetic makeup and adaptive response of this alien population. We examined the phenotypic and genotypic identity of 669 pathogen entries collected across different regions of Taiwan in the last three decades. The analysis detected a major population shift, where X. euvesicatoria and X. vesicatoria races T1 and T2 were replaced by new races of X. perforans. After its introduction, race T4 quickly became dominant in all tomato-growing areas of the island. The genomic analysis of 317 global genomes indicates that the Xanthomonas population in Taiwan has a narrow genetic background, most likely resulting from a small number of colonization events. However, despite the apparent genetic uniformity, X. perforans race T4 shows multiple phenotypic responses in tomato lines. Additionally, an in-depth analysis of effector composition suggests diversification in response to local adaptation. These include unique mutations on avrXv3 which might allow the pathogen to overcome Xv3/Rx4 resistance gene. The findings underscore the dynamic evolution of a pathogen when introduced in a semi-isolated environment and provide insights into the potential management strategies for this important disease of tomato.
Collapse
Affiliation(s)
- Jaw-Rong Chen
- Safe and Sustainable Value Chain, World Vegetable Center, Shanhua, Taiwan
| | - Kevin Aguirre-Carvajal
- Research Center of Information and Communication Technologies, University of A Coruña, A Coruña, Spain
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito, Ecuador
| | - Dao-Yuan Xue
- Seed and Seedling Management Section, Taiwan Seed Improvement and Propagation Station, Ministry of Agriculture, Taichung, Taiwan
| | - Hung-Chia Chang
- Safe and Sustainable Value Chain, World Vegetable Center, Shanhua, Taiwan
| | | | - Ya-Ping Lin
- Safe and Sustainable Value Chain, World Vegetable Center, Shanhua, Taiwan
| | - Vinicio Armijos-Jaramillo
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Ricardo Oliva
- Safe and Sustainable Value Chain, World Vegetable Center, Shanhua, Taiwan
| |
Collapse
|
3
|
Choudhary M, Minsavage GV, Goss EM, Timilsina S, Coutinho TA, Vallad GE, Paret ML, Jones JB. Whole-Genome-Sequence-Based Classification of Xanthomonas euvesicatoria pv. eucalypti and Computational Analysis of the Type III Secretion System. PHYTOPATHOLOGY 2024; 114:47-60. [PMID: 37505057 DOI: 10.1094/phyto-05-23-0150-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Xanthomonas spp. infect a wide range of annual and perennial plants. Bacterial blight in young seedlings of Eucalyptus spp. in Indonesia was originally identified as X. perforans. However, these strains failed to elicit a hypersensitive response (HR) on either tomatoes or peppers. Two of the strains, EPK43 and BCC 972, when infiltrated into tomato and pepper leaves, failed to grow to significant levels in comparison with well-characterized X. euvesicatoria pv. perforans (Xp) strains. Furthermore, spray inoculation of 'Bonny Best' tomato plants with a bacterial suspension of the Eucalyptus strains resulted in no obvious symptoms. We sequenced the whole genomes of eight strains isolated from two Eucalyptus species between 2007 and 2015. The strains had average nucleotide identities (ANIs) of at least 97.8 with Xp and X. euvesicatoria pv. euvesicatoria (Xeu) strains, both of which are causal agents of bacterial spot of tomatoes and peppers. A comparison of the Eucalyptus strains revealed that the ANI values were >99.99% with each other. Core genome phylogeny clustered all Eucalyptus strains with X. euvesicatoria pv. rosa. They formed separate clades, which included X. euvesicatoria pv. alangii, X. euvesicatoria pv. citrumelonis, and X. euvesicatoria pv. alfalfae. Based on ANI, phylogenetic relationships, and pathogenicity, we designated these Eucalyptus strains as X. euvesicatoria pv. eucalypti (Xee). Comparative analysis of sequenced strains provided unique profiles of type III secretion effectors. Core effector XopD, present in all pathogenic Xp and Xeu strains, was absent in the Xee strains. Comparison of the hrp clusters of Xee, Xp, and Xeu genomes revealed that HrpE in Xee strains was very different from that in Xp and Xeu. To determine if it was functional, we deleted the gene and complemented with the Xee hrpE, confirming it was essential for secretion of type III effectors. HrpE has a hypervariable N-terminus in Xanthomonas spp., in which the N-terminus of Xee strains differs significantly from those of Xeu and Xp strains.
Collapse
Affiliation(s)
- Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Teresa A Coutinho
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351
| | - Gary E Vallad
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomes/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Subedi A, Barrera LBTDL, Ivey ML, Egel DS, Kebede M, Kara S, Aysan Y, Minsavage GV, Roberts PD, Jones JB, Goss EM. Population Genomics Reveals an Emerging Lineage of Xanthomonas perforans on Pepper. PHYTOPATHOLOGY 2024; 114:241-250. [PMID: 37432099 DOI: 10.1094/phyto-04-23-0128-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.
Collapse
Affiliation(s)
- Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | | | - Melanie Lewis Ivey
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Daniel S Egel
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN, U.S.A
| | - Misrak Kebede
- Biotechnology Department, Collage of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Serhat Kara
- Alata Horticulture Research Institute, Mersin, Turkey
| | - Yesim Aysan
- Department of Plant Protection, Cukurova University, Adana, Turkey
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Pamela D Roberts
- Southwest Florida Research & Education Center, University of Florida, Immokalee, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
5
|
Greer SF, Surendran A, Grant M, Lillywhite R. The current status, challenges, and future perspectives for managing diseases of brassicas. Front Microbiol 2023; 14:1209258. [PMID: 37533829 PMCID: PMC10392840 DOI: 10.3389/fmicb.2023.1209258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
The Brassica genus comprises the greatest diversity of agriculturally important crops. Several species from this genus are grown as vegetable and oil crops for food, animal feed and industrial purposes. In particular, B. oleracea has been extensively bred to give rise to several familiar vegetables (cabbage, broccoli, cauliflower, kale and Brussels Sprouts, etc.) that are grouped under seven major cultivars. In 2020, 96.4 million tonnes of vegetable brassicas were produced globally with a 10.6% increase over the past decade. Yet, like other crops, the production of brassicas is challenged by diseases among which, black rot, clubroot, downy mildew and turnip yellows virus have been identified by growers as the most damaging to UK production. In some cases, yield losses can reach 90% depending upon the geographic location of cultivation. This review aims to provide an overview of the key diseases of brassicas and their management practices, with respect to the biology and lifecycle of the causal pathogens. In addition, the existing controls on the market as well as those that are currently in the research and development phases were critically reviewed. There is not one specific control method that is effective against all the diseases. Generally, cultural practices prevent disease rather than reduce or eliminate disease. Chemical controls are limited, have broad-spectrum activity, are damaging to the environment and are rapidly becoming ineffective due to the evolution of resistance mechanisms by the pathogens. It is therefore important to develop integrated pest management (IPM) strategies that are tailored to geographic locations. Several knowledge gaps have been identified and listed in this review along with the future recommendations to control these four major diseases of brassicas. As such, this review paper will act as a guide to sustainably tackle pre-harvest diseases in Brassica crops to reduce food loss.
Collapse
Affiliation(s)
- Shannon F. Greer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Arthy Surendran
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Carbon, Crop and Soils Group, SRUC, Edinburgh, United Kingdom
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Robert Lillywhite
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
6
|
Klein-Gordon JM, Guingab-Cagmat J, Minsavage GV, Meke L, Vallad GE, Goss EM, Garrett TJ, Jones JB. Strength in Numbers: Density-Dependent Volatile-Induced Antimicrobial Activity by Xanthomonas perforans. PHYTOPATHOLOGY 2023; 113:160-169. [PMID: 36129764 DOI: 10.1094/phyto-04-22-0131-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For most of the 20th century, Xanthomonas euvesicatoria was the only known bacterium associated with bacterial spot of tomato in Florida. X. perforans quickly replaced X. euvesicatoria, mainly because of production of three bacteriocins (BCNs) against X. euvesicatoria; however, X. perforans outcompeted X. euvesicatoria even when the three known BCNs were deleted. Surprisingly, we observed antimicrobial activity against X. euvesicatoria in the BCN triple mutant when the triple mutant was grown in Petri plates containing multiple spots but not in Petri plates containing only one spot. We determined that changes in the headspace composition (i.e., volatiles) rather than a diffusible signal in the agar were required for induction of the antimicrobial activity. Other Xanthomonas species also produced volatile-induced antimicrobial compounds against X. euvesicatoria and elicited antimicrobial activity by X. perforans. A wide range of plant pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis, Pantoea stewartii, and Pseudomonas cichorii, also elicited antimicrobial activity by X. perforans when multiple spots of the species were present. To identify potential antimicrobial compounds, we performed liquid chromatography with high-resolution mass spectrometry of the agar surrounding the spot in the high cell density Petri plates where the antimicrobial activity was present compared with agar surrounding the spot in Petri plates with one spot where antimicrobial activity was not observed. Among the compounds identified in the zone of inhibition were N-butanoyl-L-homoserine lactone and N-(3-hydroxy-butanoyl)-homoserine lactone, which are known quorum-sensing metabolites in other bacteria.
Collapse
Affiliation(s)
- Jeannie M Klein-Gordon
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL
| | - Gerald V Minsavage
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
| | - Laurel Meke
- Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL
| | - Gary E Vallad
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Gulf Coast Research and Education Center, IFAS, University of Florida, Balm, FL
| | - Erica M Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
- Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Timothy J Garrett
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Jeffrey B Jones
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL
| |
Collapse
|
7
|
Jibrin MO, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Goss EM, Jones JB. Bacterial Spot of Tomato and Pepper in Africa: Diversity, Emergence of T5 Race, and Management. Front Microbiol 2022; 13:835647. [PMID: 35509307 PMCID: PMC9058171 DOI: 10.3389/fmicb.2022.835647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial spot disease was first reported from South Africa by Ethel M. Doidge in 1920. In the ensuing century after the initial discovery, the pathogen has gained global attention in plant pathology research, providing insights into host-pathogen interactions, pathogen evolution, and effector discovery, such as the first discovery of transcription activation-like effectors, among many others. Four distinct genetic groups, including Xanthomonas euvesicatoria (proposed name: X. euvesicatoria pv. euvesicatoria), Xanthomonas perforans (proposed name: X. euvesicatoria pv. perforans), Xanthomonas gardneri (proposed name: Xanthomonas hortorum pv. gardneri), and Xanthomonas vesicatoria, are known to cause bacterial spot disease. Recently, a new race of a bacterial spot pathogen, race T5, which is a product of recombination between at least two Xanthomonas species, was reported in Nigeria. In this review, our focus is on the progress made on the African continent, vis-à-vis progress made in the global bacterial spot research community to provide a body of information useful for researchers in understanding the diversity, evolutionary changes, and management of the disease in Africa.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, United States
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Gerald V. Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Garry E. Vallad
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Pamela D. Roberts
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- UF/IFAS Southwest Florida Research and Education Center, Immokalee, FL, United States
| | - Erica M. Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Potnis N. Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:289-310. [PMID: 34030449 DOI: 10.1146/annurev-phyto-020620-101612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, Xanthomonas gardneri, Xanthomonas euvesicatoria, Xanthomonas perforans, and Xanthomonas vesicatoria. There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against X. euvesicatoria but not X. gardneri. A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant-microbe interactions for this pathosystem to tailor disease management strategies.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
9
|
Abrahamian P, Klein-Gordon JM, Jones JB, Vallad GE. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Appl Microbiol Biotechnol 2021; 105:6143-6158. [PMID: 34342710 DOI: 10.1007/s00253-021-11459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Tomato is an important crop grown worldwide. Various plant diseases cause massive losses in tomato plants due to diverse biotic agents. Bacterial spot of tomato (BST) is a worldwide disease that results in high losses in processed and fresh tomato. Xanthomonas perforans, an aerobic, single-flagellated, rod-shaped, Gram-negative plant pathogenic bacterium, is one of the leading causes of BST. Over the past three decades, X. perforans has increasingly been reported from tomato-growing regions and became a major bacterial disease. X. perforans thrives under high humidity and high temperature, which is commonplace in tropical and subtropical climates. Distinguishing symptoms of BST are necrotic lesions that can coalesce and cause a shot-hole appearance. X. perforans can occasionally cause fruit symptoms depending on disease pressure during fruit development. Short-distance movement in the field is mainly dependent on wind-driven rain, whereas long distance movement occurs through contaminated seed or plant material. X. perforans harbors a suite of effectors that increase pathogen virulence, fitness, and dissemination. BST management mainly relies on copper-based compounds; however, resistance is widespread. Alternative compounds, such as nanomaterials, are currently being evaluated and show high potential for BST management. Resistance breeding remains difficult to attain due to limited resistant germplasm. While the increased genetic diversity and gain and loss of effectors in X. perforans limits the success of single-gene resistance, the adoption of effector-specific transgenes and quantitative resistance may lead to durable host resistance. However, further research that aims to more effectively implement novel management tools is required to curb disease spread. KEY POINTS: • Xanthomonas perforans causes bacterial spot on tomato epidemics through infected seedlings and movement of plant material. • Genetic diversity plays a major role in shaping populations which is evident in loss and gain of effectors. • Management relies on copper sprays, but nanoparticles are a promising alternative to reduce copper toxicity.
Collapse
Affiliation(s)
- Peter Abrahamian
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | | | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
10
|
Vinatzer BA. The Power of a Statewide Survey When Phenotypic Testing Is Combined with Genomics-Enabled Molecular Characterization and Network Analyses. PHYTOPATHOLOGY 2021; 111:904-905. [PMID: 34281354 DOI: 10.1094/phyto-01-21-0025-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA
| |
Collapse
|
11
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|