1
|
Stephens SA, Dance MA, Zapp Sluis M, Kline RJ, Streich MK, Stunz GW, Adams AJ, Wells RJD, Rooker JR. Spatial distribution and movement of Atlantic tarpon (Megalops atlanticus) in the northern Gulf of Mexico. PLoS One 2024; 19:e0298394. [PMID: 38451937 PMCID: PMC10919723 DOI: 10.1371/journal.pone.0298394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.
Collapse
Affiliation(s)
- Shane A. Stephens
- Department of Marine Biology, Texas A & M University at Galveston, Galveston, Texas, United States of America
| | - Michael A. Dance
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michelle Zapp Sluis
- Department of Marine Biology, Texas A & M University at Galveston, Galveston, Texas, United States of America
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, United States of America
| | - Matthew K. Streich
- Harte Research Institute of Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| | - Gregory W. Stunz
- Harte Research Institute of Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, United States of America
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, Miami, Florida, United States of America
- Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, United States of America
| | - R. J. David Wells
- Department of Marine Biology, Texas A & M University at Galveston, Galveston, Texas, United States of America
| | - Jay R. Rooker
- Department of Marine Biology, Texas A & M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Adams A, Danylchuk AJ, Cooke SJ. Conservation connections: incorporating connectivity into management and conservation of flats fishes and their habitats in a multi-stressor world. ENVIRONMENTAL BIOLOGY OF FISHES 2023; 106:117-130. [PMID: 36686288 PMCID: PMC9847458 DOI: 10.1007/s10641-023-01391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Coastal marine fisheries and the habitats that support them are under extensive and increasing pressures from numerous anthropogenic stressors that occur at multiple spatial and temporal scales and often intersect in unexpected ways. Frequently, the scales at which these fisheries are managed do not match the scales of the stressors, much less the geographic scale of species biology. In general, fishery management is ill prepared to address these stressors, as underscored by the continuing lack of integration of fisheries and habitat management. However, research of these fisheries is increasingly being conducted at spatial and temporal scales that incorporate biology and ecological connectivity of target species, with growing attention to the foundational role of habitat. These efforts are also increasingly engaging stakeholders and rights holders in research, education, and conservation. This multi-method approach is essential for addressing pressing conservation challenges that are common to flats ecosystems. Flats fisheries occur in the shallow, coastal habitat mosaic that supports fish species that are accessible to and desirable to target by recreational fishers. Because these species rely upon coastal habitats, the anthropogenic stressors can be especially intense-habitat alteration (loss and degradation) and water quality declines are being exacerbated by climate change and increasing direct human impacts (e.g., fishing effort, boat traffic, depredation, pollution). The connections necessary for effective flats conservation are of many modes and include ontogenetic habitat connectivity; connections between stressors and impacts to fishes; connections between research and management, such as research informing spawning area protections; and engagement of stakeholders and rights holders in research, education, and management. The articles included in this Special Issue build upon a growing literature that is filling knowledge gaps for flats fishes and their habitats and increasingly providing the evidence to inform resource management. Indeed, numerous articles in this issue propose or summarize direct application of research findings to management with a focus on current and future conservation challenges. As with many other fisheries, a revised approach to management and conservation is needed in the Anthropocene.
Collapse
Affiliation(s)
- Aaron Adams
- Bonefish & Tarpon Trust, 2937 SW 27Th Avenue, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
3
|
Vilas D, Fletcher RJ, Siders ZA, Chagaris D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol Evol 2022; 12:e9604. [PMID: 36523513 PMCID: PMC9748244 DOI: 10.1002/ece3.9604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how species respond to the environment is essential in ecology, evolution, and conservation. Abiotic factors can influence species responses and the multi-dimensional space of abiotic factors that allows a species to grow represents the environmental niche. While niches are often assumed to be constant and robust, they are most likely changing over time and estimation can be influenced by population biology, sampling intensity, and computation methodology. Here, we used a 12-year time series of survey data to fit annual ecological niche models (ENMs) for 10 marine fish species by using two regression and two machine learning algorithms to evaluate the variation and differentiation of environmental niches. Fitted ENMs were used to develop multi-dimensional annual and pooled hypervolumes that were evaluated over time and across ENM algorithms, species, and years by computing volume, distance, and dissimilarity metrics for each annual estimated niche. We then investigated potential drivers of estimated hypervolume dynamics including species abundance, species occurrence, sampling effort, salinity, red tides severity, and algorithm. Overall, our results revealed that estimated niches varied over time and across ENM, species, and algorithms. Niche estimation was influenced over time by multiple factors suggesting high complexity on niche dynamics interpretation. Species with high occurrence tended to have a closer representation of the pooled niche and years with higher abundance tended to produce niche expansion. ENM algorithm, sampling effort, seawater salinity, and red tides explained the deviations from the pooled niche. Greater sampling effort led to more comprehensive and complete estimates of species niches. High red tides severity triggered niche contraction. Our results emphasize the predictable effects of population, sampling, and environment on species niche estimation and interpretation, and that each should be considered when performing and interpreting ecological niche analyses. Our niche analysis approach may contribute to effectively quantifying and assessing niche dynamics.
Collapse
Affiliation(s)
- Daniel Vilas
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
- Nature Coast Biological Station, Institute of Food and Agricultural SciencesUniversity of FloridaCedar KeyFloridaUSA
| | - Robert J. Fletcher
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
| | - Zachary A. Siders
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - David Chagaris
- Fisheries and Aquatic Sciences Program, School of Forest, Fisheries, and Geomatics SciencesUniversity of FloridaGainesvilleFloridaUSA
- Nature Coast Biological Station, Institute of Food and Agricultural SciencesUniversity of FloridaCedar KeyFloridaUSA
| |
Collapse
|
4
|
Massie JA, Santos RO, Rezek RJ, James WR, Viadero NM, Boucek RE, Blewett DA, Trotter AA, Stevens PW, Rehage JS. Primed and cued: long-term acoustic telemetry links interannual and seasonal variations in freshwater flows to the spawning migrations of Common Snook in the Florida Everglades. MOVEMENT ECOLOGY 2022; 10:48. [PMID: 36372881 PMCID: PMC9655820 DOI: 10.1186/s40462-022-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Spawning migrations are a widespread phenomenon among fishes, often occurring in response to environmental conditions prompting movement into reproductive habitats (migratory cues). However, for many species, individual fish may choose not to migrate, and research suggests that conditions preceding the spawning season (migratory primers) may influence this decision. Few studies have provided empirical descriptions of these prior conditions, partly due to a lack of long-term data allowing for robust multi-year comparisons. To investigate how primers and cues interact to shape the spawning migrations of coastal fishes, we use acoustic telemetry data from Common Snook (Centropomus undecimalis) in Everglades National Park, Florida, USA. A contingent of Snook migrate between rivers and coastal spawning sites, varying annually in both the proportion of the population that migrates and the timing of migration within the spawning season. However, the specific environmental factors that serve as migratory primers and cues remain unknown. METHODS We used eight years of acoustic telemetry data (2012-2019) from 173 tagged Common Snook to investigate how primers and cues influence migratory patterns at different temporal scales. We hypothesize that (1) interannual differences in hydrologic conditions preceding the spawning season contribute to the number of individuals migrating each year, and (2) specific environmental cues trigger the timing of migrations during the spawning season. We used GLMMs to model both the annual and seasonal migratory response in relation to flow characteristics (water level, rate of change in water level), other hydrologic/abiotic conditions (temperature, salinity), fish size, and phenological cues independent of riverine conditions (photoperiod, lunar cycle). RESULTS We found that the extent of minimum marsh water level prior to migration and fish size influence the proportion of Snook migrating each year, and that high river water level and daily rates of change serve as primary cues triggering migration timing. CONCLUSION Our findings illustrate how spawning migrations are shaped by environmental factors acting at different temporal scales and emphasize the importance of long-term movement data in understanding these patterns. Research providing mechanistic descriptions of conditions that promote migration and reproduction can help inform management decisions aimed at conserving ecologically and economically important species.
Collapse
Affiliation(s)
- Jordan A Massie
- Institute of Environment, Department of Earth and Environment, Florida International University, 11200 SW 8th St., Miami, FL, USA.
| | - Rolando O Santos
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Ryan J Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - W Ryan James
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Natasha M Viadero
- Institute of Environment, Department of Earth and Environment, Florida International University, 11200 SW 8th St., Miami, FL, USA
| | - Ross E Boucek
- Bonefish & Tarpon Trust, Florida Keys Initiative, Marathon, FL, USA
| | - David A Blewett
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Port Charlotte, FL, USA
| | - Alexis A Trotter
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | - Jennifer S Rehage
- Institute of Environment, Department of Earth and Environment, Florida International University, 11200 SW 8th St., Miami, FL, USA
| |
Collapse
|
5
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
6
|
Osland MJ, Hughes AR, Armitage AR, Scyphers SB, Cebrian J, Swinea SH, Shepard CC, Allen MS, Feher LC, Nelson JA, O'Brien CL, Sanspree CR, Smee DL, Snyder CM, Stetter AP, Stevens PW, Swanson KM, Williams LH, Brush JM, Marchionno J, Bardou R. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. GLOBAL CHANGE BIOLOGY 2022; 28:3163-3187. [PMID: 35100489 DOI: 10.1111/gcb.16111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Climate change is transforming ecosystems and affecting ecosystem goods and services. Along the Gulf of Mexico and Atlantic coasts of the southeastern United States, the frequency and intensity of extreme freeze events greatly influence whether coastal wetlands are dominated by freeze-sensitive woody plants (mangrove forests) or freeze-tolerant grass-like plants (salt marshes). In response to warming winters, mangroves have been expanding and displacing salt marshes at varying degrees of severity in parts of north Florida, Louisiana, and Texas. As winter warming accelerates, mangrove range expansion is expected to increasingly modify wetland ecosystem structure and function. Because there are differences in the ecological and societal benefits that salt marshes and mangroves provide, coastal environmental managers are challenged to anticipate the effects of mangrove expansion on critical wetland ecosystem services, including those related to carbon sequestration, wildlife habitat, storm protection, erosion reduction, water purification, fisheries support, and recreation. Mangrove range expansion may also affect wetland stability in the face of extreme climatic events and rising sea levels. Here, we review the current understanding of the effects of mangrove range expansion and displacement of salt marshes on wetland ecosystem services in the southeastern United States. We also identify critical knowledge gaps and emerging research needs regarding the ecological and societal implications of salt marsh displacement by expanding mangrove forests. One consistent theme throughout our review is that there are ecological trade-offs for consideration by coastal managers. Mangrove expansion and marsh displacement can produce beneficial changes in some ecosystem services, while simultaneously producing detrimental changes in other services. Thus, there can be local-scale differences in perceptions of the impacts of mangrove expansion into salt marshes. For very specific local reasons, some individuals may see mangrove expansion as a positive change to be embraced, while others may see mangrove expansion as a negative change to be constrained.
Collapse
Affiliation(s)
- Michael J Osland
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana, USA
| | - A Randall Hughes
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Anna R Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Steven B Scyphers
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Just Cebrian
- Northern Gulf Institute, Mississippi State University, Stennis Space Center, Mississippi, USA
| | - Savannah H Swinea
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | | | | | - Laura C Feher
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana, USA
| | - James A Nelson
- University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | | | | | | - Caitlin M Snyder
- Apalachicola National Estuarine Research Reserve, Eastpoint, Florida, USA
| | | | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | - Kathleen M Swanson
- Mission-Aransas National Estuarine Research Reserve, Port Aransas, Texas, USA
| | | | - Janell M Brush
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Gainesville, Florida, USA
| | - Joseph Marchionno
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Gainesville, Florida, USA
| | - Rémi Bardou
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
7
|
Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. GLOBAL CHANGE BIOLOGY 2021; 27:3009-3034. [PMID: 33605004 DOI: 10.1111/gcb.15563] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.
Collapse
Affiliation(s)
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | | - Barry D Keim
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Eric A Reyier
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract, Mail Code: NEM-022, Kennedy Space Center, FL, USA
| | | | | | | | | | | |
Collapse
|
8
|
Jawad WA, Krueger-Hadfield SA, Ross P. A Subtropical Nudibranch, Polycera hummi (Abbott 1952), Described for the First Time from Virginia. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Medeiros R, Oliveira CD, Souto D, Rangely J, Fabré NN. Growth stanza in fish life history using otoliths shape: the protandric Centropomus case (Carangaria: Centropomidae). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Morphoanatomical or physiological changes coupled with changes in body size are known as allometric relationships. The objective of this study was to identify the points of growth changes in Centropomus based on otolith morphometry and morphogeometry. For this purpose, 455 individuals of C. undecimalis and 176 of C. parallelus were collected from artisanal fishermen of the coast of the state of Alagoas, Brazil. The sagittal otoliths were measured for length, height, perimeter, area and weighed. The potential and polyphasic models were fitted between total fish length and otolith length. The morphotypes otoliths wen describe by form Fourier descriptors and shape indices. The polyphasic model detected three growth phases. The first stanza for C. undecimalis was at 46.8 cm and the second at 75.9 cm. For C. parallelus, it was at 18.8 cm and at 41.2 cm. Each stanza has a specific otoliths morphotype in both species. The otoliths of C. undecimalis and C. parallelus exhibited ontogenetic allometric changes in their growth pattern with two stanzas changing points. The stanzas corresponded to specific lengths reached by individuals over their life cycles, such as their size at maturity and length at sexual reversion.
Collapse
|