1
|
Visual consequent stimulus complexity affects performance in audiovisual associative learning. Sci Rep 2022; 12:17793. [PMID: 36272988 PMCID: PMC9587981 DOI: 10.1038/s41598-022-22880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/20/2022] [Indexed: 01/19/2023] Open
Abstract
In associative learning (AL), cues and/or outcome events are coupled together. AL is typically tested in visual learning paradigms. Recently, our group developed various AL tests based on the Rutgers Acquired Equivalence Test (RAET), both visual and audiovisual, keeping the structure and logic of RAET but with different stimuli. In this study, 55 volunteers were tested in two of our audiovisual tests, SoundFace (SF) and SoundPolygon (SP). The antecedent stimuli in both tests are sounds, and the consequent stimuli are images. The consequents in SF are cartoon faces, while in SP, they are simple geometric shapes. The aim was to test how the complexity of the applied consequent stimuli influences performance regarding the various aspects of learning the tests assess (stimulus pair learning, retrieval, and generalization of the previously learned associations to new but predictable stimulus pairs). In SP, behavioral performance was significantly poorer than in SF, and the reaction times were significantly longer, for all phases of the test. The results suggest that audiovisual associative learning is significantly influenced by the complexity of the consequent stimuli.
Collapse
|
2
|
Rosu A, Tót K, Godó G, Kéri S, Nagy A, Eördegh G. Visually guided equivalence learning in borderline personality disorder. Heliyon 2022; 8:e10823. [PMID: 36203892 PMCID: PMC9530487 DOI: 10.1016/j.heliyon.2022.e10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/10/2021] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
The hallmark symptoms of borderline personality disorder are maladaptive behavior and impulsive emotional reactions. However, the condition is occasionally associated with cognitive alterations. Recently, it has been found that the function of the basal ganglia and the hippocampi might also be affected. Hence, deterioration in learning and memory processes associated with these structures is expected. Thus, we sought to investigate visually guided associative learning, a type of conditioning associated with the basal ganglia and the hippocampi, in patients suffering from borderline personality disorder. In this study, the modified Rutgers Acquired Equivalence Test was used to assess associative learning in 23 patients and age-, sex-, and educational level-matched controls. The acquisition phase of the test, which is associated primarily with the frontostriatal loops, was altered in patients with borderline personality disorder: the patients exhibited poor performance in terms of building associations. However, the retrieval and generalization functions, which are primarily associated with the hippocampi and the medial temporal lobes, were not affected. These results corroborate that the basal ganglia are affected in borderline personality disorder. However, maintained retrieval and generalization do not support the assumption that the hippocampi are affected too.
Collapse
Affiliation(s)
- Anett Rosu
- Psychiatric Outpatient Care, Hospital of Orosháza, Orosháza, Hungary
| | - Kálmán Tót
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Godó
- Psychiatric Outpatient Care, Hospital of Hódmezővásárhely, Hódmezővásárhely, Hungary
| | - Szabolcs Kéri
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Corresponding author.
| | - Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Eördegh G, Tót K, Kiss Á, Kéri S, Braunitzer G, Nagy A. Multisensory stimuli enhance the effectiveness of equivalence learning in healthy children and adolescents. PLoS One 2022; 17:e0271513. [PMID: 35905111 PMCID: PMC9337650 DOI: 10.1371/journal.pone.0271513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
It has been demonstrated earlier in healthy adult volunteers that visually and multisensory (audiovisual) guided equivalence learning are similarly effective. Thus, these processes seem to be independent of stimulus modality. The question arises as to whether this phenomenon can be observed also healthy children and adolescents. To assess this, visual and audiovisual equivalence learning was tested in 157 healthy participants younger than 18 years of age, in both a visual and an audiovisual paradigm consisting of acquisition, retrieval and generalization phases. Performance during the acquisition phase (building of associations), was significantly better in the multisensory paradigm, but there was no difference between the reaction times (RTs). Performance during the retrieval phase (where the previously learned associations are tested) was also significantly better in the multisensory paradigm, and RTs were significantly shorter. On the other hand, transfer (generalization) performance (where hitherto not learned but predictable associations are tested) was not significantly enhanced in the multisensory paradigm, while RTs were somewhat shorter. Linear regression analysis revealed that all the studied psychophysical parameters in both paradigms showed significant correlation with the age of the participants. Audiovisual stimulation enhanced acquisition and retrieval as compared to visual stimulation only, regardless of whether the subjects were above or below 12 years of age. Our results demonstrate that multisensory stimuli significantly enhance association learning and retrieval in the context of sensory guided equivalence learning in healthy children and adolescents. However, the audiovisual gain was significantly higher in the cohort below 12 years of age, which suggests that audiovisually guided equivalence learning is still in development in childhood.
Collapse
Affiliation(s)
- Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Kálmán Tót
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ádám Kiss
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szabolcs Kéri
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Braunitzer
- Nyírő Gyula Hospital, Laboratory for Perception & Cognition and Clinical Neuroscience, Budapest, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
4
|
Hartmann A, Atkinson-Clement C, Depienne C, Black K. Tourette syndrome research highlights from 2020. F1000Res 2022; 11:45. [PMID: 35464046 PMCID: PMC9021667 DOI: 10.12688/f1000research.75628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
We present here research from 2020 relevant to Tourette syndrome (TS). The authors briefly summarize a few reports they consider most important or interesting.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Christel Depienne
- Institute of Human Genetics,, University Hospital Essen, Essen, 45122, Germany
| | - Kevin Black
- Department of Psychiatry, Neurology, and Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
5
|
Hughes RB, Whittingham-Dowd J, Clapcote SJ, Broughton SJ, Dawson N. Altered medial prefrontal cortex and dorsal raphé activity predict genotype and correlate with abnormal learning behavior in a mouse model of autism-associated 2p16.3 deletion. Autism Res 2022; 15:614-627. [PMID: 35142069 PMCID: PMC9303357 DOI: 10.1002/aur.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
2p16.3 deletion, involving NEUREXIN1 (NRXN1) heterozygous deletion, substantially increases the risk of developing autism and other neurodevelopmental disorders. We have a poor understanding of how NRXN1 heterozygosity impacts on brain function and cognition to increase the risk of developing the disorder. Here we characterize the impact of Nrxn1α heterozygosity on cerebral metabolism, in mice, using 14C‐2‐deoxyglucose imaging. We also assess performance in an olfactory‐based discrimination and reversal learning (OB‐DaRL) task and locomotor activity. We use decision tree classifiers to test the predictive relationship between cerebral metabolism and Nrxn1α genotype. Our data show that Nrxn1α heterozygosity induces prefrontal cortex (medial prelimbic cortex, mPrL) hypometabolism and a contrasting dorsal raphé nucleus (DRN) hypermetabolism. Metabolism in these regions allows for the predictive classification of Nrxn1α genotype. Consistent with reduced mPrL glucose utilization, prefrontal cortex insulin receptor signaling is decreased in Nrxn1α+/− mice. Behaviorally, Nrxn1α+/− mice show enhanced learning of a novel discrimination, impaired reversal learning and an increased latency to make correct choices. In addition, male Nrxn1α+/− mice show hyperlocomotor activity. Correlative analysis suggests that mPrL hypometabolism contributes to the enhanced novel odor discrimination seen in Nrxn1α+/− mice, while DRN hypermetabolism contributes to their increased latency in making correct choices. The data show that Nrxn1α heterozygosity impacts on prefrontal cortex and serotonin system function, which contribute to the cognitive alterations seen in these animals. The data suggest that Nrxn1α+/− mice provide a translational model for the cognitive and behavioral alterations seen in autism and other neurodevelopmental disorders associated with 2p16.3 deletion.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
6
|
Eördegh G, Tót K, Kelemen A, Kiss Á, Bodosi B, Hegedűs A, Lazsádi A, Hertelendy Á, Kéri S, Nagy A. The influence of stimulus complexity on the effectiveness of visual associative learning. Neuroscience 2022; 487:26-34. [PMID: 35122873 DOI: 10.1016/j.neuroscience.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Visually guided equivalence learning is a special type of associative learning, which can be evaluated using the Rutgers Acquired Equivalence Test (RAET) among other tests. RAET applies complex stimuli (faces and colored fish) between which the test subjects build associations. The complexity of these stimuli offers the test subject several clues that might ease association learning. To reduce the number of such clues, we developed an equivalence learning test (Polygon), which is structured as RAET but uses simple grayscale geometric shapes instead of faces and colored fish. In this study, we compared the psychophysical performances of the same healthy volunteers in both RAET and Polygon test. Equivalence learning, which is a basal ganglia-associated form of learning, appears to be strongly influenced by the complexity of the visual stimuli. The simple geometric shapes were associated with poor performance as compared to faces and fish. However, the difference in stimulus complexity did not affect performance in the retrieval and transfer parts of the test phase, which are assumed to be mediated by the hippocampi.
Collapse
Affiliation(s)
- Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Kálmán Tót
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Kelemen
- Department of Applied Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Kiss
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Bodosi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Hegedűs
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anna Lazsádi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ábel Hertelendy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szabolcs Kéri
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
7
|
Abstract
Tic disorders and Tourette syndrome are the most common movement disorders in children and are characterized by movements or vocalizations. Clinically, Tourette syndrome is frequently associated with comorbid psychiatric symptoms. Although dysfunction of cortical–striatal–thalamic–cortical circuits with aberrant neurotransmitter function has been considered the proximate cause of tics, the mechanism underlying this association is unclear. Recently, many studies have been conducted to elucidate the epidemiology, clinical course, comorbid symptoms, and pathophysiology of tic disorders by using laboratory studies, neuroimaging, electrophysiological testing, environmental exposure, and genetic testing. In addition, many researchers have focused on treatment for tics, including behavioral therapy, pharmacological treatment, and surgical treatment. Here, we provide an overview of recent progress on Tourette syndrome.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
8
|
Takacs A, Münchau A, Nemeth D, Roessner V, Beste C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur J Neurosci 2021; 54:5143-5160. [PMID: 34155701 DOI: 10.1111/ejn.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Gilles de la Tourette syndrome (GTS) can be characterized by enhanced cognitive functions related to creating, modifying and maintaining connections between stimuli and responses (S-R links). Specifically, two areas, procedural sequence learning and, as a novel finding, also event file binding, show converging evidence of hyperfunctioning in GTS. In this review, we describe how these two enhanced functions can be considered as cognitive mechanisms behind habitual behaviour, such as tics in GTS. Moreover, the presence of both procedural sequence learning and event file binding hyperfunctioning in the same disorder can be treated as evidence for their functional connections, even beyond GTS. Importantly though, we argue that hyperfunctioning of event file binding and procedural learning are not interchangeable: they have different time scales, different sensitivities to potential impairment in action sequencing and distinguishable contributions to the cognitive profile of GTS. An integrated theoretical account of hyperbinding and hyperlearning in GTS allows to formulate predictions for the emergence, activation and long-term persistence of tics in GTS.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Dezso Nemeth
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|