1
|
Jallow MM, Barry MA, Ndiaye NK, Touré CT, Talla C, Kiori D, Sagne SN, Sy S, Goudiaby D, Niang MN, Diagne MM, Fall G, Loucoubar C, Dia N. Genetic and antigenic characterization of influenza A(H3N2) virus after 13 consecutive years of influenza surveillance in Senegal, 2010-2022. J Med Virol 2024; 96:e70010. [PMID: 39443827 DOI: 10.1002/jmv.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Despite decades of influenza surveillance in many African countries, little is known about the evolutionary dynamics of seasonal influenza viruses. This study aimed to characterize the epidemiological, genetic and antigenic profiles of A/H3N2 viruses in Senegal from 2010 to 2022. A/H3N2 infection was confirmed using reverse transcription-polymerase chain reaction. Subsequently, a representative of A/H3N2 isolates was selected for genome sequencing. Predicted vaccine efficacy was measured using the Pepitope model. During the study period, 22638 samples were tested and influenza was detected in 31.8%, among which type A was confirmed in 78.1%. Of the Influenza A cases, the H3N2 subtype was detected in 29.8%, peaking at expected times during the rainy season. Genome sequencing of 123A/H3N2 isolates yielded 24 complete and 99 partial genomic sequences. Phylogenetic analysis revealed the circulation of multiple clades of A/H3N2 in Senegal, including 2a.3, 3C.2 and 3C.3a. A/H3N2 isolates were mainly susceptible to the influenza antiviral drugs oseltamivir and zanamivir, but the primary adamantine-resistance marker, S31N was encountered in all isolates. At least nine potential N-linked glycosylation sites were predicted among A/H3N2 strains, six of which (at positions 24, 38, 79, 181, 262 and 301) remains conserved among all isolates. Antigenic distances between circulating strains and vaccine viruses indicated varying vaccine efficacies, from suboptimal to moderate protection. The findings emphasize the need to enhance local genomic and antigenic surveillance and further research on influenza epidemiology and genetic evolution in sub-Saharan Africa.
Collapse
MESH Headings
- Senegal/epidemiology
- Humans
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N2 Subtype/classification
- Phylogeny
- Adult
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Young Adult
- Child, Preschool
- Female
- Middle Aged
- Adolescent
- Male
- Child
- Aged
- Antiviral Agents/therapeutic use
- Infant
- Influenza Vaccines/immunology
- Epidemiological Monitoring
- Genome, Viral
- Seasons
- Drug Resistance, Viral/genetics
- Vaccine Efficacy
- Evolution, Molecular
- Aged, 80 and over
Collapse
Affiliation(s)
| | - Mamadou Aliou Barry
- Institut Pasteur de Dakar, Unité d'Epidémiologie des maladies infectieuses, Dakar, Sénégal
| | | | | | - Cheikh Talla
- Institut Pasteur de Dakar, Unité d'Epidémiologie des maladies infectieuses, Dakar, Sénégal
| | - Davy Kiori
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Samba Niang Sagne
- Institut Pasteur de Dakar, Unité d'Epidémiologie des maladies infectieuses, Dakar, Sénégal
| | - Sara Sy
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Deborah Goudiaby
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | | | - Gamou Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Cheikh Loucoubar
- Institut Pasteur de Dakar, Unité d'Epidémiologie des maladies infectieuses, Dakar, Sénégal
| | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
2
|
Wang Y, Liu Y, Liu G, Sun X, Zhang Z, Shen J. Analysis of data from two influenza surveillance hospitals in Zhejiang province, China, for the period 2018-2022. PLoS One 2024; 19:e0299488. [PMID: 38416761 PMCID: PMC10901301 DOI: 10.1371/journal.pone.0299488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/11/2024] [Indexed: 03/01/2024] Open
Abstract
PURPOSE To assess the epidemiology of seasonal influenza in Huzhou City, Zhejiang Province, China, during 2018-2022 and provide insights for influenza prevention. METHODS Following the National Influenza Surveillance Program, we conducted pathogen surveillance by randomly sampling throat swabs from cases with influenza-like illness (ILI) at two sentinel hospitals. RESULTS From 2018 to 2022, a total of 3,813,471 cases were treated at two hospitals in Huzhou, China. Among them, there were 112,385 cases of Influenza-Like Illness (ILI), accounting for 2.95% of the total number of cases. A total of 11,686 ILI throat swab samples were tested for influenza viruses, with 1,602 cases testing positive for influenza virus nucleic acid, resulting in a positivity rate of 13.71%. Among the positive strains, there were 677 strains of A(H3N2) virus, 301 strains of A(H1N1) virus, 570 strains of B/Victoria virus, and 54 strains of B/Yamagata virus. The ILI percentage (ILI%) and influenza nucleic acid positivity rate showed winter-spring peaks in the years 2018, 2019, 2021, and 2022, with the peaks concentrated in January and February. Additionally, a small peak was observed in August 2022 during the summer season. No peak was observed during the winter-spring season of 2020. The highest proportion of ILI cases was observed in children aged 0-4 years, followed by school-age children aged 5-14 years. There was a positive correlation between ILI% and influenza virus nucleic acid positivity rate (r = 0.60, p < 0.05). CONCLUSIONS The influenza outbreak in Huzhou from 2020 to 2022 was to some extent influenced by the COVID-19 pandemic and public health measures. After the conclusion of the COVID-19 pandemic, the influenza outbreak in Huzhou may become more severe. Therefore, it is crucial to promptly assess the influenza outbreak trends based on the ILI% and the positivity rate of influenza virus nucleic acid tests.
Collapse
Affiliation(s)
- Yuda Wang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Yan Liu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Guangtao Liu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Xiuxiu Sun
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Zizhe Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Jianyong Shen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Ruttoh VK, Symekher SL, Majanja JM, Opanda SM, Chitechi EW, Wadegu M, Tonui R, Rotich PK, Nyandwaro TT, Mwangi AW, Mwangi IN, Oira RM, Musimbi AG, Nzou SM. Tracking severe acute respiratory syndrome coronavirus 2 transmission and co-infection with other acute respiratory pathogens using a sentinel surveillance system in Rift Valley, Kenya. Influenza Other Respir Viruses 2023; 17:e13227. [PMID: 38019696 PMCID: PMC10686236 DOI: 10.1111/irv.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most significant public health challenge in over a century. SARS-CoV-2 has infected over 765 million people worldwide, resulting in over 6.9 million deaths. This study aimed to detect community transmission of SARS-CoV-2 and monitor the co-circulation of SARS-CoV-2 with other acute respiratory pathogens in Rift Valley, Kenya. METHODS We conducted a cross-sectional active sentinel surveillance for the SARS-CoV-2 virus among patients with acute respiratory infections at four sites in Rift Valley from January 2022 to December 2022. One thousand two hundred seventy-one patients aged between 3 years and 98 years presenting with influenza-like illness (ILI) were recruited into the study. Nasopharyngeal swab specimens from all study participants were screened using a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for SARS-CoV-2, influenza A, influenza B and respiratory syncytial virus (RSV). RESULTS The samples that tested positive for influenza A (n = 73) and RSV (n = 12) were subtyped, while SARS-CoV-2 (n = 177) positive samples were further screened for 12 viral and seven bacterial respiratory pathogens. We had a prevalence of 13.9% for SARS-CoV-2, 5.7% for influenza A, 2% for influenza B and 1% for RSV. Influenza A-H1pdm09 and RSV B were the most dominant circulating subtypes of influenza A and RSV, respectively. The most common co-infecting pathogens were Streptococcus pneumoniae (n = 29) and Haemophilus influenzae (n = 19), accounting for 16.4% and 10.7% of all the SARS-CoV-2 positive samples. CONCLUSIONS Augmenting syndromic testing in acute respiratory infections (ARIs) surveillance is crucial to inform evidence-based clinical and public health interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Meshack Wadegu
- Centre for Virus ResearchKenya Medical Research InstituteNairobiKenya
| | - Ronald Tonui
- Department of Molecular Biology and BiotechnologyPan African University Institute of Basic Sciences Technology and InnovationNairobiKenya
| | | | | | - Anne Wanjiru Mwangi
- Centre for Microbiology ResearchKenya Medical Research InstituteNairobiKenya
| | - Ibrahim Ndungu Mwangi
- Centre for Biotechnology Research and DevelopmentKenya Medical Research InstituteNairobiKenya
| | | | | | - Samson Muuo Nzou
- Centre for Microbiology ResearchKenya Medical Research InstituteNairobiKenya
| |
Collapse
|
4
|
Characterization of influenza infection in a high-income urban setting in Nairobi, Kenya. Trop Med Health 2022; 50:69. [PMID: 36114561 PMCID: PMC9479273 DOI: 10.1186/s41182-022-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza viruses are an important cause of respiratory infections across all age groups. Information on occurrence and magnitude of influenza virus infections in different populations in Kenya however remains scanty, compromising estimation of influenza disease burden. This study examined influenza infection in an urban high-income setting in Nairobi to establish its prevalence and activity of influenza viruses, and evaluated diagnostic performance of a rapid influenza diagnostic test. Methodology A cross-sectional hospital-based study was conducted in six private health facilities located within high-income residential areas in Nairobi from January 2019 to July 2020. Patients of all ages presenting with influenza-like illness (ILI) were recruited into the study. Detection of influenza virus was conducted using rapid diagnosis and reverse transcription–polymerase chain reaction (RT–PCR). Data were summarized using descriptive statistics and tests of association. Sensitivity, specificity and area under receiver operating characteristics curve was calculated to establish diagnostic accuracy of the rapid diagnosis test. Results The study recruited 125 participants with signs and symptoms of ILI, of whom 21 (16.8%) were positive for influenza viruses. Of all the influenza-positive cases, 17 (81.0%) were influenza type A of which 70.6% were pandemic H1N1 (A/H1N1 2009). Highest detection was observed among children aged 5–10 years. Influenza virus mostly circulated during the second half of the year, and fever, general fatigue and muscular and joint pain were significantly observed among participants with influenza virus. Sensitivity and specificity of the diagnostic test was 95% (95% confidence interval 75.1–99.9) and 100% (95% confidence interval 96.5–100.0), respectively. Conclusions Findings of this study shows continuous but variable activity of influenza virus throughout the year in this population, with substantial disease burden. The findings highlight the need for continuous epidemiologic surveillance including genetic surveillance to monitor activity and generate data to inform vaccine introduction or development, and other interventions.
Collapse
|
5
|
Umuhoza T, Oyugi J, Mancuso JD, Ahmed A, Bulimo WD. Morbidity burden, seasonality and factors associated with the human respiratory syncytial virus, human parainfluenza virus, and human adenovirus infections in Kenya. IJID REGIONS 2021; 1:72-78. [PMID: 35757823 PMCID: PMC9216343 DOI: 10.1016/j.ijregi.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Human respiratory syncytial (HRSV), parainfluenza (HPIV) and adenoviruses (HAdV) These non-influenza viruses contributed to influenza-like illness morbidity burden HRSV, HPIV and HAdV infections had a significant impact on infants HRSV had a clear seasonal pattern, with cases peaking around April–May each year During the surveillance period, HRSV was associated with climate parameters
Background Human respiratory syncytial viruses (HRSV), human parainfluenza viruses (HPIV), and human adenoviruses (HAdVs) cause a substantial morbidity burden globally. Objective We sought to estimate morbidity burden, assess seasonality, and determine factors associated with these respiratory viruses in Kenya. Methods The data were obtained from Kenyan sites included in the Köppen-Geiger climate classification system. We defined the proportion of morbidity burden by descriptive analysis and visualized time-series data for January 2007–December 2013. Logistic regression was used to identify factors associated with infection outcomes. Results The morbidity burden for HRSV was 3.1%, HPIV 5.3% and HAdVs 3.3%. Infants were more likely to be infected than other age groups. HRSV exhibited seasonality with high occurrence in January–March (odds ratio[OR] = 2.73) and April–June (OR = 3.01). Hot land surface temperature (≥40 °C) was associated with HRSV infections (OR = 2.75), as was warmer air temperature (19-22.9 °C) (OR = 1.68), compared with land surface temperature (<30) and cooler air temperature (<19 °C) respectively. Moderate rainfall (150-200 mm) areas had greater odds of HRSV infection (OR = 1.32) than low rainfall (<150 mm). Conclusion HRSV, HPIV and HAdVs contributed to morbidity burden, and infants were significantly affected. HRSV had a clear seasonal pattern and were associated with climate parameters, unlike HPIV and HAdVs.
Collapse
Affiliation(s)
- Therese Umuhoza
- Institute of Tropical and Infectious Diseases, University of Nairobi
- Corresponding author: Therese Umuhoza, Institute of Tropical and Infectious Diseases, University of Nairobi, P.O. Box 19676 -00200, Nairobi, Kenya
| | - Julius Oyugi
- Institute of Tropical and Infectious Diseases, University of Nairobi
| | - James D. Mancuso
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Anwar Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wallace D. Bulimo
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
6
|
Nambafu J, Achakolong M, Mwendwa F, Bwika J, Riunga F, Gitau S, Patel H, Adam RD. A prospective observational study of community acquired pneumonia in Kenya: the role of viral pathogens. BMC Infect Dis 2021; 21:703. [PMID: 34301184 PMCID: PMC8300991 DOI: 10.1186/s12879-021-06388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Lower respiratory tract infections continue to contribute significantly to morbidity and mortality across all age groups globally. In sub-Saharan Africa, many studies of community acquired pneumonia in adults have focused on HIV-infected patients and little attention has been given to risk factors and etiologic agents in an urban area with a more moderate HIV prevalence. METHODS We prospectively enrolled 77 patients admitted to a 280 bed teaching hospital in Kenya with radiographically confirmed community acquired pneumonia from May 2019 to March 2020. The patients were followed for etiology and clinical outcomes. Viral PCR testing was performed using the FTD respiratory pathogen-21 multiplex kit on nasopharyngeal or lower respiratory samples. Additional microbiologic workup was performed as determined by the treating physicians. RESULTS A potential etiologic agent(s) was identified in 57% including 43% viral, 5% combined viral and bacterial, 5% bacterial and 4% Pneumocystis. The most common etiologic agent was Influenza A which was associated with severe clinical disease. The most common underlying conditions were cardiovascular disease, diabetes and lung disease, while HIV infection was identified in only 13% of patients. Critical care admission was required for 24, and 31% had acute kidney injury, sometimes in combination with acute respiratory distress or sepsis. CONCLUSION Viruses, especially influenza, were commonly found in patients with CAP. In contrast to other studies from sub-Saharan Africa, the underlying conditions were similar to those reported in high resource areas and point to the growing concern of the double burden of infectious and noncommunicable diseases.
Collapse
Affiliation(s)
- Jamila Nambafu
- Department of Medicine, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| | - Mary Achakolong
- Department of Pathology, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| | - Fridah Mwendwa
- Department of Pathology, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| | - Jumaa Bwika
- Department of Medicine, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| | - Felix Riunga
- Department of Medicine, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| | - Samuel Gitau
- Department of Radiology, Aga Khan University, Nairobi, Kenya
| | - Hanika Patel
- Department of Radiology, Aga Khan University, Nairobi, Kenya
| | - Rodney D. Adam
- Department of Medicine, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
- Department of Pathology, Aga Khan University, Third Parklands Rd, Nairobi, Kenya
| |
Collapse
|
7
|
Juliana AE, Tang MJ, Kemps L, Noort AC, Hermelijn S, Plötz FB, Zonneveld R, Wilschut JC. Viral causes of severe acute respiratory infection in hospitalized children and association with outcomes: A two-year prospective surveillance study in Suriname. PLoS One 2021; 16:e0247000. [PMID: 33606795 PMCID: PMC7894877 DOI: 10.1371/journal.pone.0247000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Viruses are the most frequent cause of severe acute respiratory infection (SARI) in children. It is currently unknown whether presence of a virus, the number of viruses, or type of virus, are associated with clinical outcomes of pediatric SARI in developing countries. METHODS Between 2012 and 2014 nasopharyngeal swabs and demographic and clinical variables were prospectively collected for surveillance of viral causes of SARI in Surinamese children within 48 hours after hospitalization. These swabs were tested for 18 respiratory viruses using a multiplex polymerase chain reaction (PCR) panel to identify the specific viral causes of SARI, unknown to the treating physicians. In post hoc analyses we evaluated if the PCR results, and demographic and clinical characteristics, were associated with course of disease, duration of respiratory support, and length of stay (LOS). RESULTS Of a total of 316 analyzed children, 290 (92%) had one or more viruses. Rhinovirus/enterovirus (43%) and respiratory syncytial virus (34%) were most prevalent. Course of disease was mild in 234 (74%), moderate in 68 (22%), and severe in 14 (4%) children. Neither presence of a single virus, multiple viruses, or the type of virus, were different between groups. Prematurity and lower weight-for-age-z-score were independent predictors of a severe course of disease, longer duration of respiratory support, and longer LOS. CONCLUSIONS Viruses are common causes of pediatric SARI in Suriname, yet not necessarily associated with clinical outcomes. In developing countries, demographic and clinical variables can help to identify children at-risk for worse outcome, while PCR testing may be reserved to identify specific viruses, such as influenza, in specific patient groups or during outbreaks.
Collapse
Affiliation(s)
- Amadu E. Juliana
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
- * E-mail:
| | - Ming-Jan Tang
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Lex Kemps
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Albert C. Noort
- Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
| | - Sandra Hermelijn
- Department of Medical Microbiology, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Frans B. Plötz
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rens Zonneveld
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Jan C. Wilschut
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|