1
|
Wang Q, Li Q, Quan T, Liang H, Li J, Li K, Ye S, Zhu S, Li B. Effects of Illumination Color on Hypothalamic Appetite-Regulating Gene Expression and Glycolipid Metabolism. Nutrients 2024; 16:4330. [PMID: 39770951 PMCID: PMC11678393 DOI: 10.3390/nu16244330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns. It was found that the RL group exacerbated high-fat-induced obesity in mice compared with GL- or WL-treated mice. RL-exposed mice exhibited worsened metabolic profiles, including impaired glucose tolerance/insulin sensitivity, elevated lipid levels, and reduced serum insulin levels. Serological analyses showed that RL exposure resulted in decreased leptin levels and increased levels of orexigenic and hunger hormones in mice. Further qPCR analysis showed that the expression levels of the hypothalamic appetite-related genes NPY and AgRP mRNA were upregulated in RL-treated mice, while the expression level of the appetite suppressor gene POMC mRNA was downregulated. The results of this study will be instructive for the regulation of appetite and metabolism from the perspective of illumination colors.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianru Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Quan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.L.); (T.Q.); (H.L.); (J.L.); (K.L.); (S.Y.); (S.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Hu LW, Gong YC, Zou HX, Wang LB, Sun Y, Godinez A, Yang HY, Wu SH, Zhang S, Huang WZ, Gui ZH, Lin LZ, Zeng XW, Yang BY, Liu RQ, Chen G, Li S, Guo Y, Dong GH. Outdoor light at night is a modifiable environmental factor for metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176203. [PMID: 39270867 DOI: 10.1016/j.scitotenv.2024.176203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Metabolic syndrome (MetS) is a significant public health problem and presents an escalating clinical challenge globally. To combat this problem effectively, urgent measures including identify some modifiable environmental factors are necessary. Outdoor artificial light at night (LAN) exposure garnered much attention due to its impact on circadian rhythms and metabolic process. However, epidemiological evidence on the association between outdoor LAN exposure and MetS remains limited. To determine the relationship between outdoor LAN exposure and MetS, 15,477 adults participated the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. Annual levels of outdoor LAN exposure at participants' residential addresses were assessed using satellite data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Generalized linear mixed effect models were utilized to assess the association of LAN exposure with MetS and its components, including elevated waist circumference (WC), triglycerides (TG), blood pressure (BP), fasting blood glucose (FBG), and reduced high-density lipoprotein cholesterol (HDL-C). Effect modification by various social demographic and behavior factors was also examined. Overall, 4701 (30.37 %) participants were defined as MetS. The LAN exposure ranged from 6.03 to 175.00 nW/cm2/sr. The adjusted odds ratio (OR) of MetS each quartile increment of LAN exposure were 1.43 (95 % CI: 1.21-1.69), 1.44 (95 % CI: 1.19-1.74) and 1.52 (95 % CI: 1.11-2.08), respectively from Q2-Q4. Similar adverse associations were also found for the components of MetS, especially for elevated BP, TG and FBG. Interaction analyses indicated that the above associations were stronger in participants without habitual exercise compared with those with habitual exercise (e.g. OR were 1.52 [95 % CI: 1.28-1.82] vs. 1.27 [95 % CI, 1.04-1.55], P-interaction = 0.042 for MetS). These findings suggest that long-term exposure to LAN can have a significant deleterious effect on MetS, potentially making LAN an important modifiable environmental factor to target in future preventive strategies.
Collapse
Affiliation(s)
- Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan-Chen Gong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong-Xing Zou
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Le-Bing Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanan Sun
- Department of Epidemiology & Biostatistics, College of Integrated Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Alejandro Godinez
- Department of Epidemiology & Biostatistics, College of Integrated Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Han-Yu Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Han Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuo Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wen-Zhong Huang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gongbo Chen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Windred DP, Burns AC, Lane JM, Olivier P, Rutter MK, Saxena R, Phillips AJK, Cain SW. Brighter nights and darker days predict higher mortality risk: A prospective analysis of personal light exposure in >88,000 individuals. Proc Natl Acad Sci U S A 2024; 121:e2405924121. [PMID: 39405349 PMCID: PMC11513964 DOI: 10.1073/pnas.2405924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
Light enhances or disrupts circadian rhythms, depending on the timing of exposure. Circadian disruption contributes to poor health outcomes that increase mortality risk. Whether personal light exposure predicts mortality risk has not been established. We therefore investigated whether personal day and night light, and light patterns that disrupt circadian rhythms, predicted mortality risk. UK Biobank participants (N = 88,905, 62.4 ± 7.8 y, 57% female) wore light sensors for 1 wk. Day and night light exposures were defined by factor analysis of 24-h light profiles. A computational model of the human circadian pacemaker was applied to model circadian amplitude and phase from light data. Cause-specific mortality was recorded in 3,750 participants across a mean (±SD) follow-up period of 8.0 ± 1.0 y. Individuals with brighter day light had incrementally lower all-cause mortality risk (adjusted-HR ranges: 0.84 to 0.90 [50 to 70th light exposure percentiles], 0.74 to 0.84 [70 to 90th], and 0.66 to 0.83 [90 to 100th]), and those with brighter night light had incrementally higher all-cause mortality risk (aHR ranges: 1.15 to 1.18 [70 to 90th], and 1.21 to 1.34 [90 to 100th]), compared to individuals in darker environments (0 to 50th percentiles). Individuals with lower circadian amplitude (aHR range: 0.90 to 0.96 per SD), earlier circadian phase (aHR range: 1.16 to 1.30), or later circadian phase (aHR range: 1.13 to 1.20) had higher all-cause mortality risks. Day light, night light, and circadian amplitude predicted cardiometabolic mortality, with larger hazard ratios than for mortality by other causes. Findings were robust to adjustment for age, sex, ethnicity, photoperiod, and sociodemographic and lifestyle factors. Minimizing night light, maximizing day light, and keeping regular light-dark patterns that enhance circadian rhythms may promote cardiometabolic health and longevity.
Collapse
Affiliation(s)
- Daniel P. Windred
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA5042, Australia
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC3800, Australia
| | - Angus C. Burns
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA02142
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Jacqueline M. Lane
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA02142
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Patrick Olivier
- Action Lab, Department of Human-Centred Computing, Faculty of Information Technology, Monash University, Melbourne, VIC3800, Australia
| | - Martin K. Rutter
- Centre for Biological Timing, Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, ManchesterM13 9PL, United Kingdom
- Diabetes, Endocrinology and Metabolism Centre, National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University National Health Service Foundation Trust, ManchesterM13 9WU, United Kingdom
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA02115
- Division of Sleep Medicine, Harvard Medical School, Boston, MA02115
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Andrew J. K. Phillips
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA5042, Australia
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC3800, Australia
| | - Sean W. Cain
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA5042, Australia
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC3800, Australia
| |
Collapse
|
4
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, Voronin K, Mezhakova M, Borisenkov M, Shigabaeva A, Yuzhakova N, Lobkina S, Weinert D, Cornelissen G. Blue Light and Temperature Actigraphy Measures Predicting Metabolic Health Are Linked to Melatonin Receptor Polymorphism. BIOLOGY 2023; 13:22. [PMID: 38248453 PMCID: PMC10813279 DOI: 10.3390/biology13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Konstantin Danilenko
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Sergey Kolomeichuk
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center, Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Alexander Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Ivan Petrov
- Department of Biological & Medical Physics UNESCO, Medical University, 625023 Tyumen, Russia
| | - Kirill Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Marina Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of the Federal Research Centre Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
| | - Natalya Yuzhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Svetlana Lobkina
- Healthcare Institution of Yamalo-Nenets Autonomous Okrug “Tarko-Sale Central District Hospital”, 629850 Urengoy, Russia;
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Viana Mendes J, Benedito-Silva AA, Medeiros Andrade MA, Vartanian D, da Silva Brandão Gonçalves B, Cipolla-Neto J, Pedrazzoli M. Actigraphic characterization of sleep and circadian phenotypes of PER3 gene VNTR genotypes. Chronobiol Int 2023; 40:1244-1250. [PMID: 37691400 DOI: 10.1080/07420528.2023.2256858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/12/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
The molecular circadian timing system involves genes known as "clock genes," such as the PER3 gene. Studies have demonstrated associations among a repeat polymorphism (VNTR) of the PER3 gene with chronotypes, with the occurrence of circadian rhythm disorders and with sleep homeostasis phenotypes. The aim of this study was to investigate, by actigraphy, sleep and circadian rhythm profiles of people with different genotypes for the VNTR polymorphism of the PER3 gene. We genotyped 467 individuals (46,39% male) for the PER3 VNTR polymorphism. The mean age of the participants was 21.84 ± 2.64, ranging from 18 to 30 y old. Actigraphy data were collected from a subsample of 81 subjects with PER3 4-repeats homozygous (PER34/4) or 5-repeats homozygous (PER35/5) genotypes from April to June of 2021. From this sample, 48 PER34/4 and 33 PER35/5 subjects wore a wrist actigraph between 12 and 19 d. The sleep onset (weekdays, p = 0.015; weekend, p = 0.022) and offset (weekdays, p = 0.004; weekend, p = 0.041) of the PER35/5 group occurred later than the PER34/4 group. Similar results were observed for the mid-sleep phase of weekdays (MSW) (p = 0.008) and free days (MSF) (p = 0.019), and for the mid-sleep phase corrected for sleep debt accumulated over the week (MSFsc) (p = 0.024). Despite the phase differences found between the PER34/4 and PER35/5 groups, no differences were found in sleep duration and social jet lag. However, the PER34/4 group presented, on average, a longer sleep rebound on the days off when compared to the PER35/5 (p = 0.002). The PER35/5 group showed lower interdaily stability (IS) (p = 0.032) and higher daily activity rhythm variability (IV) (p = 0.035). The findings of the present study revealed associations between the PER3 gene, sleep, and circadian rhythms. In general, we found that the gene is associated with the expression of sleep timing and duration and to the phase of the activity rhythm. The experiments carried out here occurred in the COVID-19 pandemic scenario, which should be considered as an environmental element with potential effects on the results obtained.
Collapse
Affiliation(s)
- Juliana Viana Mendes
- School of Arts, Sciences and Humanities of University of São Paulo, São Paulo, Brazil
| | | | | | - Daniel Vartanian
- School of Arts, Sciences and Humanities of University of São Paulo, São Paulo, Brazil
| | | | - José Cipolla-Neto
- Laboratory of Neurobiology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Mario Pedrazzoli
- School of Arts, Sciences and Humanities of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Park S, Zhunis A, Constantinides M, Aiello LM, Quercia D, Cha M. Social dimensions impact individual sleep quantity and quality. Sci Rep 2023; 13:9681. [PMID: 37322226 PMCID: PMC10272146 DOI: 10.1038/s41598-023-36762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
While sleep positively impacts well-being, health, and productivity, the effects of societal factors on sleep remain underexplored. Here we analyze the sleep of 30,082 individuals across 11 countries using 52 million activity records from wearable devices. Our data are consistent with past studies of gender and age-associated sleep characteristics. However, our analysis of wearable device data uncovers differences in recorded vs. self-reported bedtime and sleep duration. The dataset allowed us to study how country-specific metrics such as GDP and cultural indices relate to sleep in groups and individuals. Our analysis indicates that diverse sleep metrics can be represented by two dimensions: sleep quantity and quality. We find that 55% of the variation in sleep quality, and 63% in sleep quantity, are explained by societal factors. Within a societal boundary, individual sleep experience was modified by factors like exercise. Increased exercise or daily steps were associated with better sleep quality (for example, faster sleep onset and less time awake in bed), especially in countries like the U.S. and Finland. Understanding how social norms relate to sleep will help create strategies and policies that enhance the positive impacts of sleep on health, such as productivity and well-being.
Collapse
Affiliation(s)
- Sungkyu Park
- Department of AI Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Data Science Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Assem Zhunis
- Data Science Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- School of Computing, KAIST, Daejeon, 34141, Republic of Korea
| | | | - Luca Maria Aiello
- IT University, Copenhagen, Denmark
- Pioneer Centre for AI, Copenhagen, Denmark
| | - Daniele Quercia
- Nokia Bell Labs, Cambridge, CB3 0FA, UK.
- Centre for Urban Science and Progress, King's College London, London, UK.
| | - Meeyoung Cha
- Data Science Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- School of Computing, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Samakidou GE, Koliaki CC, Liberopoulos EN, Katsilambros NL. Non-Classical Aspects of Obesity Pathogenesis and Their Relative Clinical Importance for Obesity Treatment. Healthcare (Basel) 2023; 11:1310. [PMID: 37174852 PMCID: PMC10178220 DOI: 10.3390/healthcare11091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is a chronic disease and a major public health problem due to its association with non-communicable diseases and all-cause mortality. An increased energy intake and decreased physical activity have been long recognized as the classical parameters that contribute to the development of obesity. However, several other, non-classical factors have also been associated with obesity through various complex mechanisms. Some of them are diet related, such as diet quality, dietary habits and speed of eating. Other factors are non-dietary, such as endocrine-disrupting chemicals, sleep quality and quantity, psychotropic medications and light at night. The scope of the present narrative review is to address these non-classical factors that are implicated in the pathogenesis of obesity, to clarify their potential role in the management of obesity and, where possible, to provide some practical clinical recommendations.
Collapse
Affiliation(s)
- Georgia E. Samakidou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece; (C.C.K.); (E.N.L.); (N.L.K.)
| | | | | | | |
Collapse
|
10
|
Wang T, Kaida N, Kaida K. Effects of outdoor artificial light at night on human health and behavior: A literature review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121321. [PMID: 36805469 DOI: 10.1016/j.envpol.2023.121321] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The quality of life of human beings has improved tremendously through improved productivity, convenience, safety, and livability due to nighttime lights that illuminate outdoor work, leisure, and mobility. Recently, however, concerns have been growing over outdoor artificial light at night (ALAN) and its effects on human beings as well as ecosystems including animals and plants. This literature review aims to deliver a critical overview of the findings and the areas for future research on the effects of outdoor ALAN on human health and behaviors. Through a narrative literature review, we found that scientific research crucially lacks studies on the effects of outdoor ALAN on human behaviors and health, including social interaction, which may be more widespread compared to what is recognized so far. This review also highlights the importance of investigating the causal and complex relationships between outdoor ALAN, health, and behaviors with sleep as a key mediating factor. We elucidate that outdoor ALAN has both positive and negative effects on human life. Therefore, it is important for societies to be able to access facts and evidence about these effects to plan, agree to, and realize the optimal usage of nighttime lighting that balances its merits and demerits. Researchers in related areas of study must investigate and deliver the science of outdoor ALAN to various stakeholders, such as citizens, policymakers, urban and landscape planners, relevant practitioners, and industries. We believe that our review improves the understanding of outdoor ALAN in relation to human life and contributes to sustainable and thriving societies.
Collapse
Affiliation(s)
- Tongyu Wang
- Graduate School of Systems and Information Engineering, University of Tsukuba, Japan; Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| | - Naoko Kaida
- Institute of Systems and Information Engineering, University of Tsukuba, Japan; Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| | - Kosuke Kaida
- Institute for Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Japan.
| |
Collapse
|
11
|
Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. Nutrients 2023; 15:nu15061391. [PMID: 36986120 PMCID: PMC10056135 DOI: 10.3390/nu15061391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Light is an essential part of many life forms. The natural light–dark cycle has been the dominant stimulus for circadian rhythms throughout human evolution. Artificial light has restructured human activity and provided opportunities to extend the day without reliance on natural day–night cycles. The increase in light exposure at unwanted times or a reduced dynamic range of light between the daytime and nighttime has introduced negative consequences for human health. Light exposure is closely linked to sleep–wake regulation, activity and eating patterns, body temperature, and energy metabolism. Disruptions to these areas due to light are linked to metabolic abnormalities such as an increased risk of obesity and diabetes. Research has revealed that various properties of light influence metabolism. This review will highlight the complex role of light in human physiology, with a specific emphasis on metabolic regulation from the perspective of four main properties of light (intensity, duration, timing of exposure, and wavelength). We also discuss the potential influence of the key circadian hormone melatonin on sleep and metabolic physiology. We explore the relationship between light and metabolism through circadian physiology in various populations to understand the optimal use of light to mitigate short and long-term health consequences.
Collapse
|
12
|
Maghsoudipour M, Allison MA, Patel SR, Talavera GA, Daviglus M, Zee PC, Reid KJ, Makarem N, Malhotra A. Associations of chronotype and sleep patterns with metabolic syndrome in the Hispanic community health study/study of Latinos. Chronobiol Int 2022; 39:1087-1099. [PMID: 35509113 PMCID: PMC9177706 DOI: 10.1080/07420528.2022.2069030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sleep duration, sleep efficiency, and sleep timing have been shown to have potential effects on metabolic functions relevant to circadian rhythms. It is not clear if the impact of sleep patterns on metabolic risk factors is through sociocultural and environmental factors or circadian misalignment. We investigated the associations of sleep patterns, chronotype, and social jet lag with metabolic syndrome among non-shift worker Hispanic/Latino adults. We used cross-sectional data from the Sueño Ancillary Study of The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Data from a subsample of 2189 participants aged 18-64 years were used in the analysis. Mean nightly sleep duration, mean sleep onset time, mean sleep offset time, mean sleep midpoint time, sleep efficiency, sleep variability (standard deviation (SD) of sleep duration, and SD of sleep midpoint), and time spent above light exposure threshold (1000 lux) in a day were assessed by wrist actigraphy (Acti-watch Spectrum). Chronotype was determined by the reduced Morningness-Eveningness Questionnaire. Medical conditions including dyslipidemia, hypertension, and diabetes mellitus were determined from a fasting blood specimen and physical exam at the baseline visit. To determine whether sleep patterns, light levels, chronotype, and social jetlag are associated with metabolic syndrome, multivariable logistic regression models were fitted, including variables with P < .15 in the univariate analysis. The results of the multivariable analysis demonstrated that in participants older than 40 years, intermediate chronotype (vs early) was significantly associated with a higher risk of metabolic syndrome (Odds ratio (95%CI): 1.33 (1.04,1.7)), while later chronotype (vs. early) in participants younger than 40 years was significantly associated with a lower risk of metabolic syndrome (Odds ratio (95%CI): 0.37 (0.14, 0.96)). Also, higher sleep efficiency was significantly associated with decreased odds of metabolic syndrome (Odds ratio (95%CI): 0.98 (0.96, 0.99)). Nightly sleep duration was not significantly different between two groups of participants with and without metabolic syndrome in multivariable analyses. There was no significant association between social jet lag and metabolic syndrome in multivariable analysis (p = .286). Moreover, there was no significant association between chronotype and social jet lag in multivariable analysis. The association between metabolic syndrome and chronotype is age-dependent. While early chronotype is associated with metabolic syndrome in younger individuals, it tended to be associated with lower odds for metabolic syndrome in older individuals.
Collapse
Affiliation(s)
- Maryam Maghsoudipour
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Matthew A. Allison
- Department of Family Medicine, University of California San Diego, La Jolla, California, USA
| | - Sanjay R. Patel
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gregory A. Talavera
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Phyllis C. Zee
- Center for Circadian and Sleep Medicine, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathryn J. Reid
- Center for Circadian and Sleep Medicine, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nour Makarem
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Atul Malhotra
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Silva CM, Teixeira BS, Wright KP, Maia YCDP, Crispim CA. Time-Related Eating Patterns Are Associated with the Total Daily Intake of Calories and Macronutrients in Day and Night Shift Workers. Nutrients 2022; 14:nu14112202. [PMID: 35684002 PMCID: PMC9182503 DOI: 10.3390/nu14112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of the study was to investigate whether time-related eating patterns are associated with the daily intake of calories and macronutrients in Brazilian male military police officers (n = 81; 29-day and 52-night workers; mean age: 36.4 ± 0.9 and 38.5 ± 0.7 years, respectively). Energy and macronutrient intake were determined by a non-consecutive 3-day food recall. Time-related eating patterns, such as the time of the first and the last meals, eating duration, and caloric midpoint, were evaluated. Individuals were classified as “early” or “late” eaters according to the median caloric midpoint. Night shift workers showed a later eating time for the last meal (p < 0.001), longer eating duration (p < 0.001), and later caloric midpoint (p = 0.037) than day workers. Late eaters from both workgroups consumed more 24 h energy (p = 0.028), fat in calories (p = 0.006) and protein (calories: p < 0.001; percentage of total calories: p = 0.042), and less carbohydrates in calories (p = 0.010) intake than early eaters. The time of the first meal was negatively correlated with 24 h energy (p = 0.024) and carbohydrate (p = 0.031) intake only in day workers. The time of the last meal was positively correlated with 24 h energy (day workers: β = 0.352; p = 0.044; night workers: β = 0.424; p = 0.002) and protein (day workers: β = 0.451; p = 0.013; night workers: β = 0.536; p < 0.001) intake for both shift workers, and with carbohydrate (β = 0.346; p = 0.016) and fat (β = 0.286; p = 0.042) intake only in night workers. Eating duration was positively correlated with energy (day workers: β = 0.473; p = 0.004; night workers: β = 0.320; p = 0.023) and carbohydrate (day workers: β = 0.418; p = 0.011; night workers: β = 0.364; p = 0.010) intake in both groups. Thus, time-related eating patterns indicative of intake later at night are associated with increased daily energy and macronutrient intake.
Collapse
Affiliation(s)
- Catarina Mendes Silva
- Graduate Program of Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (C.M.S.); (B.S.T.); (Y.C.d.P.M.)
| | - Bruno Simão Teixeira
- Graduate Program of Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (C.M.S.); (B.S.T.); (Y.C.d.P.M.)
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, 3100 Marine Street, Boulder, CO 80309, USA;
| | - Yara Cristina de Paiva Maia
- Graduate Program of Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (C.M.S.); (B.S.T.); (Y.C.d.P.M.)
| | - Cibele Aparecida Crispim
- Graduate Program of Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; (C.M.S.); (B.S.T.); (Y.C.d.P.M.)
- Correspondence: ; Fax: +55-34-3218-2084
| |
Collapse
|
14
|
Constantino DB, Xavier NB, Levandovski R, Roenneberg T, Hidalgo MP, Pilz LK. Relationship Between Circadian Strain, Light Exposure, and Body Mass Index in Rural and Urban Quilombola Communities. Front Physiol 2022; 12:773969. [PMID: 35153809 PMCID: PMC8826472 DOI: 10.3389/fphys.2021.773969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Industrialization has greatly changed human lifestyle; work and leisure activities have been moved indoors, and artificial light has been used to illuminate the night. As cyclic environmental cues such as light and feeding become weak and/or irregular, endogenous circadian systems are increasingly being disrupted. These disruptions are associated with metabolic dysfunction, possibly contributing to increased rates of overweight and obesity worldwide. Here, we aimed to investigate how activity-rest rhythms, patterns of light exposure, and levels of urbanization may be associated with body mass index (BMI) in a sample of rural and urban Quilombola communities in southern Brazil. These are characterized as remaining social groups who resisted the slavery regime that prevailed in Brazil. Quilombola communities were classified into five groups according to their stage of urbanization: from rural areas with no access to electricity to highly urbanized communities. We collected anthropometric data to calculate BMI, which was categorized as follows: from ≥ 18.5 kg/m2 to < 25 kg/m2 = normal weight; from ≥ 25 kg/m2 to < 30 kg/m2 = overweight; and ≥ 30 kg/m2 = obese. Subjects were asked about their sleep routines and light exposure on workdays and work-free days using the Munich Chronotype Questionnaire (N = 244 included). In addition, we analyzed actimetry data from 121 participants with seven consecutive days of recordings. Living in more urbanized areas and higher intradaily variability (IV) of activity-rest rhythms were associated with an increased risk of belonging to the overweight or obese group, when controlling for age and sex. These findings are consistent with preclinical data and point to potential strategies in obesity prevention and promotion of healthy metabolic profiles.
Collapse
Affiliation(s)
- Débora Barroggi Constantino
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicoli Bertuol Xavier
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rosa Levandovski
- Psychiatry and Behavioral Sciences Program (PPG) Avaliação e Produção de Tecnologias para o Sistema Único de Saúde (SUS), Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) Saúde Coletiva, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Till Roenneberg
- Institute of Medical Psychology - Ludwig Maximilian University (LMU), Munich, Germany
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luísa K Pilz
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
15
|
Xu YX, Yu Y, Huang Y, Wan YH, Su PY, Tao FB, Sun Y. Exposure to bedroom light pollution and cardiometabolic risk: A cohort study from Chinese young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118628. [PMID: 34883146 DOI: 10.1016/j.envpol.2021.118628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Indoor light environment has altered dramatically and exposure to light at night (LAN) potential leads to the progression of cardiometabolic conditions. However, few studies have investigated the effect of bedroom LAN exposure on cardiometabolic risk. To estimate the associations between multi-period bedroom LAN exposure with cardiometabolic risk among Chinese young adults. We objectively measured multi-period bedroom LAN intensity using portable illuminance meter in an ongoing prospective cohort (n = 484). At one-year follow-up, 230 young adults provided fasting blood samples for quantification of cardiometabolic parameters. Cardiometabolic (CM)-risk score was derived as the sum of standardized sex-specific z-scores for waist circumference (WC), mean arterial pressure (MAP), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG) and homeostasis model assessment for insulin resistance (HOMA-IR), with HDL-C multiplied by - 1. Multivariate and univariable linear regression models were used to examine associations of multi-period bedroom LAN exposure with cardiometabolic risk. Exposure to higher bedroom LAN intensity is associated with 1.47-unit increase in CM-risk score (95% CI: 0.69-2.25; P < 0.001). Besides, post-bedtime light exposure was associated with elevated fasting insulin (PBL-1h: β = 0.06, 95% CI: 0.01-0.10; PBL-4h: β = 0.33, 95% CI: 0.19-0.47) and HOMA-IR (PBL-1h: β = 0.013, 95% CI: 0-0.03; PBL-4h: β = 0.07, 95% CI: 0.04-0.11) while pre-awake light exposure was associated with elevated total cholesterol (PAL-1h: β = 0.03, 95% CI: 0.02-0.04; PAL-2h: β = 0.02, 95% CI: 0.01-0.03), triglyceride (PAL-1h: β = 0.015, 95% CI: 0.01-0.02; PAL-2h: β = 0.01, 95% CI: 0-0.02) and low-density lipoprotein cholesterol (PAL-1h: β = 0.02, 95% CI: 0.01-0.03; PAL-2h: β = 0.02, 95% CI: 0.01-0.03). Among young adults, bedroom LAN exposure was significantly associated with higher cardiometabolic risk. Furthermore, different periods of bedroom light exposure have time-dependent effect on cardiometabolic risk. Further research is needed to confirm our findings and to elucidate potential mechanisms.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Hui Wan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Zhang S, Xu M, Shen Z, Shang C, Zhang W, Chen S, Liu C. Green light exposure aggravates high-fat diet feeding-induced hepatic steatosis and pancreatic dysfunction in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112802. [PMID: 34555719 DOI: 10.1016/j.ecoenv.2021.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The increased incidence of metabolic syndrome (MetS) has been demonstrated to be closely associated with external environments, such as unhealthy ambient light exposure. Of note, spectral distribution of the light functions as a critical determinant of light's pathophysiological effects. However, the effects of the lighting spectrum on metabolic homeostasis and the specific target organs remain elusive. To address this concern, we in this study high-fat diet (HFD)-fed obese mice with different spectra of the light, and divided them into white light (WL)-treated group, green light (GL)-treated group and blue light (BL)-treated group. We found that compared with BL- or WL-treated obese mice, animals exposed to GL showed worsened metabolic status, including increased body weight gain, impaired glucose tolerance/insulin sensitivity, increased levels of serum lipids, and decreased levels of serum insulin. At the organ level, GL exposure particularly exacerbated hepatic lipid accumulation and enlarged the islet volume. Taking advantages of metabolomics and transcriptomics analyses, we screened out taurocholic acid (TCA) and adenosine (AD) as two promising metabolites mediating the deleterious effects of GL on the liver and islets, respectively. In detail, GL aggravates HFD-induced lipid synthesis and gluconeogenesis in the liver via the reduction of TCA, while triggering inflammation and cellular dysfunction in islets via the induction of AD. Collectively, our findings confirmed that GL and the HFD have a synergistic effect in the induction of metabolic disorders. DATA AVAILABILITY: All data supported the paper are present in the paper and/or the Supplementary Materials. The original datasets are also available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shiyao Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyi Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ziyue Shen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changrui Shang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology and Experimental Platform for Drug Chronological Intervention and Therapy, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, School of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|