1
|
Schuller A, Oakes J, LaRocca T, Matz J, Eden M, Bellini C, Montrose L. Robust differential gene expression patterns in the prefrontal cortex of male mice exposed to an occupationally relevant dose of laboratory-generated wildfire smoke. Toxicol Sci 2024; 201:300-310. [PMID: 39107885 PMCID: PMC11424885 DOI: 10.1093/toxsci/kfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Wildfires have become common global phenomena concurrent with warmer and drier climates and are now major contributors to ambient air pollution worldwide. Exposure to wildfire smoke has been classically associated with adverse cardiopulmonary health outcomes, especially in vulnerable populations. Recent work has expanded our understanding of wildfire smoke toxicology to include effects on the central nervous system and reproductive function; however, the neurotoxic profile of this toxicant remains ill-explored in an occupational context. Here, we sought to address this by using RNA sequencing to examine transcriptomic signatures in the prefrontal cortex of male mice modeling career wildland firefighter smoke exposure. We report robust changes in gene expression profiles between smoke-exposed samples and filtered air controls, evidenced by 2,862 differentially expressed genes (51.2% increased). We further characterized the functional relevance of these genes highlighting enriched pathways related to synaptic transmission, neuroplasticity, blood-brain barrier integrity, and neurotransmitter metabolism. Additionally, we identified possible contributors to these alterations through protein-protein interaction network mapping, which revealed a central node at ß-catenin and secondary hubs centered around mitochondrial oxidases, the Wnt signaling pathway, and gene expression machinery. The data reported here will serve as the foundation for future experiments aiming to characterize the phenotypic effects and mechanistic underpinnings of occupational wildfire smoke neurotoxicology.
Collapse
Affiliation(s)
- Adam Schuller
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Jessica Oakes
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Tom LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, United States
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Matthew Eden
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA 02120, United States
| | - Luke Montrose
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
2
|
Li X, Qiao M, Zhou Y, Peng Y, Wen G, Xie C, Zhang Y. Modulating the RPS27A/PSMD12/NF-κB pathway to control immune response in mouse brain ischemia-reperfusion injury. Mol Med 2024; 30:106. [PMID: 39039432 PMCID: PMC11265174 DOI: 10.1186/s10020-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.
Collapse
Affiliation(s)
- Xiaocheng Li
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University & College of Food and Biological Engineering, Chengdu, 610081, P. R. China
| | - Ming Qiao
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Yan Peng
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Gang Wen
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, P. R. China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, Sichuan, 610081, P. R. China.
| |
Collapse
|
3
|
Khayer N, Jalessi M, Farhadi M, Azad Z. S100a9 might act as a modulator of the Toll-like receptor 4 transduction pathway in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:9722. [PMID: 38678138 PMCID: PMC11055867 DOI: 10.1038/s41598-024-60205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyp (CRSwNP) is a highly prevalent disorder characterized by persistent nasal and sinus mucosa inflammation. Despite significant morbidity and decreased quality of life, there are limited effective treatment options for such a disease. Therefore, identifying causal genes and dysregulated pathways paves the way for novel therapeutic interventions. In the current study, a three-way interaction approach was used to detect dynamic co-expression interactions involved in CRSwNP. In this approach, the internal evolution of the co-expression relation between a pair of genes (X, Y) was captured under a change in the expression profile of a third gene (Z), named the switch gene. Subsequently, the biological relevancy of the statistically significant triplets was confirmed using both gene set enrichment analysis and gene regulatory network reconstruction. Finally, the importance of identified switch genes was confirmed using a random forest model. The results suggested four dysregulated pathways in CRSwNP, including "positive regulation of intracellular signal transduction", "arachidonic acid metabolic process", "spermatogenesis" and "negative regulation of cellular protein metabolic process". Additionally, the S100a9 as a switch gene together with the gene pair {Cd14, Tpd52l1} form a biologically relevant triplet. More specifically, we suggested that S100a9 might act as a potential upstream modulator in toll-like receptor 4 transduction pathway in the major CRSwNP pathologies.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kui L, Jiao Y, Jiang H, Wang G, Li Z, Ji X, Zhou C. Expression and metabolism profiles of CVT associated with inflammatory responses and oxygen carrier ability in the brain. CNS Neurosci Ther 2024; 30:e14494. [PMID: 37902195 PMCID: PMC11017414 DOI: 10.1111/cns.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
AIM As the main type of stroke, the incidence of cerebral venous thrombosis (CVT) has been rising. However, the comprehensive mechanisms behind it remain unclear. Thus, the multi-omics study is required to investigate the mechanism after CVT and elucidate the characteristic pathology of venous stroke and arterial stroke. METHODS Adult rats were subjected to CVT and MCAO models. Whole-transcriptome sequencing (RNA-seq) and untargeted metabolomics analysis were performed to construct the transcriptome and metabolism profiles of rat brains after CVT and also MCAO. The difference analysis, functional annotation, and enrichment analysis were also performed. RESULTS Through RNA-seq analysis, differentially expressed genes (DEGs) were screened. 174 CVT specific genes including Il1a, Ccl9, Cxxl6, Tnfrsf14, etc., were detected. The hemoglobin genes, including both Hba and Hbb, were significantly downregulated after CVT, compared both to the MCAO and Sham groups. Metabolism analysis showed that CVT had higher heterogeneity of metabolism compared to MCAO. Metabolites including N-stearoyltyrosine, 5-methoxy-3-indoleaceate, Afegostat, pipecolic acid, etc. were specially regulated in CVT. Through the immune infiltration analysis, it was found that CVT had a higher immune response, with the abundance of certain types of immune cells increased, especially T helper cells. It was important to find the prevalence of the activation of inflammatory chemokine, cytokine, NOD-like pathway, and neutrophil extracellular trap. CONCLUSION We explored and analyzed the gene expression and metabolomic characteristics of CVT, revealed the specific inflammatory reaction mechanism of CVT and found the markers in transcriptome and metabolism levels. It points out the direction for CVT early diagnosis and treatment.
Collapse
Affiliation(s)
- Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Yinming Jiao
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Guoyun Wang
- Shenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Zongyu Li
- Dehong People's HospitalMangshiChina
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Amber S, Zahid S. An in silico approach to identify potential downstream targets of miR-153 involved in Alzheimer's disease. Front Genet 2024; 15:1271404. [PMID: 38299037 PMCID: PMC10824926 DOI: 10.3389/fgene.2024.1271404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Background: In recent years, microRNAs (miRNAs) have emerged as key players in the pathophysiology of multiple diseases including Alzheimer's disease (AD). Messenger RNA (mRNA) targeting for regulation of gene expression by miRNAs has been implicated in the annotation of disease pathophysiology as well as in the explication of their starring role in contemporary therapeutic interventions. One such miRNA is miR-153 which mediates the survival of cortical neurons and inhibits plaque formation. However, the core mRNA targets of miR-153 have not been fully illustrated. Objective: The present study aimed to elucidate the potential involvement of miR-153 in AD pathogenesis and to reveal its downstream targets. Methods: miRanda was used to identify AD-associated targets of miR-153. TargetScan, PicTar, miRmap, and miRDB were further used to validate these targets. STRING 12 was employed to assess the protein-protein interaction network while Gene ontology (GO) analysis was carried out to identify the molecular functions exhibited by these gene targets. Results: In silico analysis using miRanda predicted five important AD-related targets of miR-153, including APP, SORL1, PICALM, USF1, and PSEN1. All five target genes are negatively regulated by miR-153 and are substantially involved in AD pathogenesis. A protein interaction network using STRING 12 uncovered 30 potential interacting partners for SORL1, PICALM, and USF1. GO analysis revealed that miR-153 target genes play a critical role in neuronal survival, differentiation, exon guidance, amyloid precursor protein processing, and synapse formation. Conclusion: These findings unravel the potential role of miR-153 in the pathogenesis of AD and provide the basis for forthcoming experimental studies.
Collapse
Affiliation(s)
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Neurobiology Research Laboratory, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
6
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
7
|
Shvetcov A, Thomson S, Spathos J, Cho AN, Wilkins HM, Andrews SJ, Delerue F, Couttas TA, Issar JK, Isik F, Kaur S, Drummond E, Dobson-Stone C, Duffy SL, Rogers NM, Catchpoole D, Gold WA, Swerdlow RH, Brown DA, Finney CA. Blood-Based Transcriptomic Biomarkers Are Predictive of Neurodegeneration Rather Than Alzheimer's Disease. Int J Mol Sci 2023; 24:15011. [PMID: 37834458 PMCID: PMC10573468 DOI: 10.3390/ijms241915011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospitals Network, Sydney, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Ann-Na Cho
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Shea J. Andrews
- Department of Psychiatry & Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Fabien Delerue
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A. Couttas
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jasmeen Kaur Issar
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Finula Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eleanor Drummond
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Carol Dobson-Stone
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shantel L. Duffy
- Allied Health, Research and Strategic Partnerships, Nepean Blue Mountains Local Health District, Penrith, NSW 2750, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Renal and Transplant Medicine Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Daniel Catchpoole
- The Tumor Bank, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Children’s Cancer Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Wendy A. Gold
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Medical Research Institute, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW 2145, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
8
|
Zhang W, Jiang R, Chen S, Wang Y. scIBD: a self-supervised iterative-optimizing model for boosting the detection of heterotypic doublets in single-cell chromatin accessibility data. Genome Biol 2023; 24:225. [PMID: 37814314 PMCID: PMC10561408 DOI: 10.1186/s13059-023-03072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Application of the widely used droplet-based microfluidic technologies in single-cell sequencing often yields doublets, introducing bias to downstream analyses. Especially, doublet-detection methods for single-cell chromatin accessibility sequencing (scCAS) data have multiple assay-specific challenges. Therefore, we propose scIBD, a self-supervised iterative-optimizing model for boosting heterotypic doublet detection in scCAS data. scIBD introduces an adaptive strategy to simulate high-confident heterotypic doublets and self-supervise for doublet-detection in an iteratively optimizing manner. Comprehensive benchmarking on various simulated and real datasets demonstrates the outperformance and robustness of scIBD. Moreover, the downstream biological analyses suggest the efficacy of doublet-removal by scIBD.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Automation, Xiamen University, Xiamen, 361000, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| | - Ying Wang
- Department of Automation, Xiamen University, Xiamen, 361000, Fujian, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
- Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision, Xiamen, 361005, Fujian, China.
| |
Collapse
|
9
|
Li C, Yang W, Meng Y, Feng L, Sun L, Li Z, Liu X, Li M. Exploring the therapeutic mechanism of Banxia Xiexin Decoction in mild cognitive impairment and diabetes mellitus: a network pharmacology approach. Metab Brain Dis 2023; 38:2315-2325. [PMID: 37556042 DOI: 10.1007/s11011-023-01270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
The incidence of mild cognitive impairment (MCI) and diabetes mellitus (DM) is increasing year by year. Clinical findings show that Banxia Xiexin Decoction (BXD) can be combined to treat MCI and DM. However, the principle and mechanism of BXD in treating MCI and DM remain unclear. In this study, to explore the common mechanism of BXD in treating MCI and DM by using the method of network pharmacology. Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was used to screen the main active components of BXD, as well as to predict and screen its potential targets. Using Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), DisGeNET, GeneCards to select the target proteins of two diseases, and intersecting the drug target and the disease target to obtain the common target of drug diseases, which is imported into cytoscape software to draw the network diagram of "drug components-target diseases" and the interaction network diagram between the common target proteins. According to the Database for Annotation, Visualization and Integrated Discovery (DAVID) database, we analyzed the common targets using two methods, gene ontology Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway enrichment analysis and Gene Ontology (GO) function enrichment analysis, as well as studied the interaction mechanism of the two diseases, with the results validated using molecular docking. A total of 267 main active components of BXD were screened, together with the two diseases shared 233 common targets. The top five key targets identified by the topological analysis were TP53, AKT1, STAT3, TNF, and MAPK3. Go enrichment results indicated that it was primarily related to response to drug, extracellular space, enzyme binding, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding. t KEGG enrichment pathway analysis identified 20 significant pathways, the majority of which are AGE-RAGE signaling pathways in diabetic complications, lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, TNF signaling pathway, and so on. The results of molecular docking revealed that the key components of BXD, baicalein, licochalcone a, quercetin, and naringenin, had strong binding ability with core targets TP53, AKT1, STAT3, TNF, MAPK3. BXD can treat MCI and DM by multi-targets and multi-channels,and plays a role of "homotherapy for heteropathy" mainly through response to drug, positive regulation of gene expression, extracellular space and enzyme binding and other ways.
Collapse
Affiliation(s)
- Cong Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Yang
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Yubo Meng
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Lina Feng
- Neurology Department, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Linlin Sun
- Neurology Department, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Mingquan Li
- Neurology Department, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
10
|
Khayer N, Motamed N, Marashi SA, Goshadrou F. RT-DOb, a switch gene for the gene pair {Csf1r, Milr1}, can influence the onset of Alzheimer's disease by regulating communication between mast cell and microglia. PLoS One 2023; 18:e0288134. [PMID: 37410787 DOI: 10.1371/journal.pone.0288134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hamano M, Ichinose T, Yasuda T, Ishijima T, Okada S, Abe K, Tashiro K, Furuya S. Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr-Trp Dipeptide in Brains Treated with the Amyloid-β Peptide. Nutrients 2023; 15:2731. [PMID: 37375635 DOI: 10.3390/nu15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr-Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25-35 peptide (Aβ25-35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25-35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25-35. This study revealed that YW has a neuroprotective effect against Aβ25-35 neuropathy, suggesting that YW is a new functional-food-material peptide.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Takashi Ichinose
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tokio Yasuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Kanagawa, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| |
Collapse
|
12
|
Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023; 238:485-497. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.
Collapse
Affiliation(s)
- Jingshun Luo
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
14
|
Wang YS, Wang SL, Liu XL, Kang ZC. Platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury. Neural Regen Res 2023; 18:375-381. [PMID: 35900433 PMCID: PMC9396478 DOI: 10.4103/1673-5374.346461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The effect of platelet-rich plasma on nerve regeneration remains controversial. In this study, we established a rabbit model of sciatic nerve small-gap defects with preserved epineurium and then filled the gaps with platelet-rich plasma. Twenty-eight rabbits were divided into the following groups (7 rabbits/group): model, low-concentration PRP (2.5–3.5-fold concentration of whole blood platelets), medium-concentration PRP (4.5–6.5-fold concentration of whole blood platelets), and high-concentration PRP (7.5–8.5-fold concentration of whole blood platelets). Electrophysiological and histomorphometrical assessments and proteomics analysis were used to evaluate regeneration of the sciatic nerve. Our results showed that platelet-rich plasma containing 4.5–6.5- and 7.5–8.5-fold concentrations of whole blood platelets promoted repair of sciatic nerve injury. Proteomics analysis was performed to investigate the possible mechanism by which platelet-rich plasma promoted nerve regeneration. Proteomics analysis showed that after sciatic nerve injury, platelet-rich plasma increased the expression of integrin subunit β-8 (ITGB8), which participates in angiogenesis, and differentially expressed proteins were mainly enriched in focal adhesion pathways. Additionally, two key proteins, ribosomal protein S27a (RSP27a) and ubiquilin 1 (UBQLN1), which were selected after protein-protein interaction analysis, are involved in the regulation of ubiquitin levels in vivo. These data suggest that platelet-rich plasma promotes peripheral nerve regeneration after sciatic nerve injury by affecting angiogenesis and intracellular ubiquitin levels.
Collapse
|
15
|
A 5-Pathway Signature Predicts Prognosis Based on Immune-Derived lncRNAs in Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2906049. [PMID: 36545126 PMCID: PMC9763012 DOI: 10.1155/2022/2906049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Background Currently, predictive models were not developed based on the signaling pathway signatures of immune-related lncRNAs in breast cancer (BRCA) patients. Methods We selected unsupervised hierarchical clustering algorithm to classify patients with BRCA based on the significant immune-derived lncRNAs from the TCGA dataset. And different methods including ESTIMATE, ImmuneCellAI, and CIBERSORT were performed to evaluate the immune infiltration of tumor microenvironment. Using Lasso regression algorithm, we filtered the significant signaling pathways enriched by GSEA, GSVA, or PPI analysis to develop a prognostic model. And a nomogram integrated with clinical factors and significant pathways was constructed to predict the precise probability of overall survival (OS) of BRCA patients in the TCGA dataset (n = 1,098) and another two testing sets (n = 415). Results BRCA patients were stratified into the PC (n = 571) and GC (n = 527) subgroup with significantly different prognosis with 550 immune-related lncRNAs in the TCGA dataset. Integrated analysis revealed different immune response, oncogenic signaling, and metabolic reprograming pathways between these two subgroups. And a 5-pathway signature could predict the prognosis of BRCA patients between these two subgroups independently in the TCGA dataset, which was confirmed in another two cohorts from the GEO dataset. In the TCGA dataset, 5-year OS rate was 78% (95% CI: 73-84) vs. 82% (95% CI: 77-87) for the PC and GC group (HR = 1.63 (95% CI: 1.17-2.28), p = 0.004). The predictive power was similar in another two testing sets (HR > 1.20, p < 0.01). Finally, a nomogram is developed for clinical application, which integrated this signature and age to accurately predict the survival probability in BRCA patients. Conclusion This 5-pathway signature correlated with immune-derived lncRNAs was able to precisely predict the prognosis for patients with BRCA and provided a rich source characterizing immune-related lncRNAs and further informed strategies to target BRCA vulnerabilities.
Collapse
|
16
|
Li J, Zhang Y, Lu T, Liang R, Wu Z, Liu M, Qin L, Chen H, Yan X, Deng S, Zheng J, Liu Q. Identification of diagnostic genes for both Alzheimer's disease and Metabolic syndrome by the machine learning algorithm. Front Immunol 2022; 13:1037318. [PMID: 36405716 PMCID: PMC9667080 DOI: 10.3389/fimmu.2022.1037318] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disease worldwide. Metabolic syndrome is the most common metabolic and endocrine disease in the elderly. Some studies have suggested a possible association between MetS and AD, but few studied genes that have a co-diagnostic role in both diseases. METHODS The microarray data of AD (GSE63060 and GSE63061 were merged after the batch effect was removed) and MetS (GSE98895) in the GEO database were downloaded. The WGCNA was used to identify the co-expression modules related to AD and MetS. RF and LASSO were used to identify the candidate genes. Machine learning XGBoost improves the diagnostic effect of hub gene in AD and MetS. The CIBERSORT algorithm was performed to assess immune cell infiltration MetS and AD samples and to investigate the relationship between biomarkers and infiltrating immune cells. The peripheral blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data from patients with AD and normal individuals were visualized with the Seurat standard flow dimension reduction clustering the metabolic pathway activity changes each cell with ssGSEA. RESULTS The brown module was identified as the significant module with AD and MetS. GO analysis of shared genes showed that intracellular transport and establishment of localization in cell and organelle organization were enriched in the pathophysiology of AD and MetS. By using RF and Lasso learning methods, we finally obtained eight diagnostic genes, namely ARHGAP4, SNRPG, UQCRB, PSMA3, DPM1, MED6, RPL36AL and RPS27A. Their AUC were all greater than 0.7. Higher immune cell infiltrations expressions were found in the two diseases and were positively linked to the characteristic genes. The scRNA-seq datasets finally obtained seven cell clusters. Seven major cell types including CD8 T cell, monocytes, T cells, NK cell, B cells, dendritic cells and macrophages were clustered according to immune cell markers. The ssGSEA revealed that immune-related gene (SNRPG) was significantly regulated in the glycolysis-metabolic pathway. CONCLUSION We identified genes with common diagnostic effects on both MetS and AD, and found genes involved in multiple metabolic pathways associated with various immune cells.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yang Zhang
- General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Tanli Lu
- Department of Neurology, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Rui Liang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhikang Wu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meimei Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Linyao Qin
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shan Deng
- Department of Neurology, The Fourth Affliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jiemin Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
17
|
Yang Z, Shi M, Zhang X, Yao D. Genome-Wide Screening for Pathogenic Proteins and microRNAs Associated with Parasite-Host Interactions in Trypanosoma brucei. INSECTS 2022; 13:968. [PMID: 36354791 PMCID: PMC9695099 DOI: 10.3390/insects13110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Tsetse flies are a type of blood-sucking insect living in diverse locations in sub-Saharan Africa. These insects can transmit the unicellular parasite Trypanosoma brucei (T. brucei) which causes African trypanosomiasis in mammals. There remain huge unmet needs for prevention, early detection, and effective treatments for this disease. Currently, few studies have investigated the molecular mechanisms of parasite-host interactions underlying African trypanosomiasis, mainly due to a lack of understanding of the T. brucei genome. In this study, we dissected the genomic and transcriptomic profiles of T. brucei by annotating the genome and analyzing the gene expression. We found about 5% of T. brucei proteins in the human proteome, while more than 80% of T. brucei protein in other trypanosomes. Sequence alignment analysis showed that 142 protein homologs were shared among T. brucei and mammalian genomes. We identified several novel proteins with pathogenic potential supported by their molecular functions in T. brucei, including 24 RNA-binding proteins and six variant surface glycoproteins. In addition, 26 novel microRNAs were characterized, among which five miRNAs were not found in the mammalian genomes. Topology analysis of the miRNA-gene network revealed three genes (RPS27A, UBA52 and GAPDH) involved in the regulation of critical pathways related to the development of African trypanosomiasis. In conclusion, our work opens a new door to understanding the parasite-host interaction mechanisms by resolving the genome and transcriptome of T. brucei.
Collapse
Affiliation(s)
- Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Xiaoli Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Danyu Yao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
18
|
Aczél T, Benczik B, Ágg B, Körtési T, Urbán P, Bauer W, Gyenesei A, Tuka B, Tajti J, Ferdinandy P, Vécsei L, Bölcskei K, Kun J, Helyes Z. Disease- and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: role of inflammatory signalling and oxidative stress. J Headache Pain 2022; 23:113. [PMID: 36050647 PMCID: PMC9438144 DOI: 10.1186/s10194-022-01478-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients. METHODS We determined miRNA expression of migraineurs' PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data. RESULTS In the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics. CONCLUSIONS We provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Körtési
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary.
- PharmInVivo Ltd., Pécs, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti út 12, 7624, Pécs, Hungary.
| |
Collapse
|
19
|
Chen F, Wang N, He X. Identification of Differential Genes of DNA Methylation Associated With Alzheimer's Disease Based on Integrated Bioinformatics and Its Diagnostic Significance. Front Aging Neurosci 2022; 14:884367. [PMID: 35615586 PMCID: PMC9125150 DOI: 10.3389/fnagi.2022.884367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disease. The pathogenesis is complex and has not been clearly elucidated, and there is no effective treatment. Recent studies have demonstrated that DNA methylation is closely associated with the pathogenesis of AD, which sheds light on investigating potential biomarkers for the diagnosis of early AD and related possible therapeutic approaches. Methods Alzheimer's disease patients samples and healthy controls samples were collected from two datasets in the GEO database. Using LIMMA software package in R language to find differentially expressed genes (DEGs). Afterward, DEGs have been subjected to enrichment analysis of GO and KEGG pathways. The PPI networks and Hub genes were created and visualized based on the STRING database and Cytoscape. ROC curves were further constructed to analyze the accuracy of these genes for AD diagnosis. Results Analysis of the GSE109887 and GSE97760 datasets showed 477 significant DEGs. GO and KEGG enrichment analysis showed terms related to biological processes related to these genes. The top ten Hub genes were found on the basis of the PPI network using the CytoHubba plugin, and the AUC areas of these top ranked genes were all greater than 0.7, showing satisfactory diagnostic accuracy. Conclusion The study identified the top 10 Hub genes associated with AD-related DNA methylation, of which RPSA, RPS23, and RPLP0 have high diagnostic accuracy and excellent AD biomarker potential.
Collapse
Affiliation(s)
| | | | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
20
|
Shokati Eshkiki Z, Khayer N, Talebi A, Karbalaei R, Akbari A. Novel insight into pancreatic adenocarcinoma pathogenesis using liquid association analysis. BMC Med Genomics 2022; 15:30. [PMID: 35180880 PMCID: PMC8855560 DOI: 10.1186/s12920-022-01174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy associated with a poor prognosis. High-throughput disease-related-gene expression data provide valuable information on gene interaction, which consequently lead to deeper insight about pathogenesis. The co-expression analysis is a common approach that is used to investigate gene interaction. However, such an approach solely is inadequate to reveal the complexity of the gene interaction. The three-way interaction model is known as a novel approach applied to decode the complex relationship between genes. METHODS In the current study, the liquid association method was used to capture the statistically significant triplets involved in the PDAC pathogenesis. Subsequently, gene set enrichment and gene regulatory network analyses were performed to trace the biological relevance of the statistically significant triplets. RESULTS The results of the current study suggest that "response to estradiol" and "Regulation of T-cell proliferation" are two critical biological processes that may be associated with the PDAC pathogenesis. Additionally, we introduced six switch genes, namely Lamc2, Klk1, Nqo1, Aox1, Tspan1, and Cxcl12, which might be involved in PDAC triggering. CONCLUSION In the current study, for the first time, the critical genes and pathways involved in the PDAC pathogenesis were investigated using the three-way interaction approach. As a result, two critical biological processes, as well as six potential biomarkers, were suggested that might be involved in the PDAC triggering. Surprisingly, strong evidence for the biological relevance of our results can be found in the literature.
Collapse
Affiliation(s)
- Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Karbalaei
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Oppegaard K, Harris CS, Shin J, Paul SM, Cooper BA, Chan A, Anguera JA, Levine J, Conley Y, Hammer M, Miaskowski CA, Chan RJ, Kober KM. Cancer-related cognitive impairment is associated with perturbations in inflammatory pathways. Cytokine 2021; 148:155653. [PMID: 34388477 PMCID: PMC10792770 DOI: 10.1016/j.cyto.2021.155653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Cancer-related cognitive impairment (CRCI) is a significant problem for patients receiving chemotherapy. While a growing amount of pre-clinical and clinical evidence suggests that inflammatory mechanisms underlie CRCI, no clinical studies have evaluated for associations between CRCI and changes in gene expression. Therefore, the purpose of this study was to evaluate for differentially expressed genes and perturbed inflammatory pathways across two independent samples of patients with cancer who did and did not report CRCI. The Attentional Function Index (AFI) was the self-report measure used to assess CRCI. AFI scores of <5 and of >7.5 indicate low versus high levels of cognitive function, respectively. Of the 185 patients in Sample 1, 49.2% had an AFI score of <5 and 50.8% had an AFI score of >7.5. Of the 158 patients in Sample 2, 50.6% had an AFI score of <5 and 49.4% had an AFI score of >7.5. Data from 182 patients in Sample 1 were analyzed using RNA-seq. Data from 158 patients in Sample 2 were analyzed using microarray. Twelve KEGG signaling pathways were significantly perturbed between the AFI groups, five of which were signaling pathways related to inflammatory mechanisms (e.g., cytokine-cytokine receptor interaction, tumor necrosis factor signaling). This study is the first to describe perturbations in inflammatory pathways associated with CRCI. Findings highlight the role of cytokines both in terms of cytokine-specific pathways, as well as pathways involved in cytokine production and cytokine activation. These findings have the potential to identify new targets for therapeutics and lead to the development of interventions to improve cognition in patients with cancer.
Collapse
Affiliation(s)
- Kate Oppegaard
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| | - Carolyn S Harris
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| | - Joosun Shin
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| | - Steven M Paul
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| | - Bruce A Cooper
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| | - Alexandre Chan
- School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, 147B Bison Modular, Irvine, CA 92697, USA.
| | - Joaquin A Anguera
- School of Medicine, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| | - Jon Levine
- School of Medicine, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; School of Dentistry, University of California, 513 Parnassus Ave, MSB, San Francisco, CA 94117, USA.
| | - Yvette Conley
- School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA 15261, USA.
| | - Marilyn Hammer
- Dana-Farber Cancer Institute, 450 Brookline Avenue, LW523, Boston, MA 02215, USA.
| | - Christine A Miaskowski
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA; School of Medicine, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| | - Raymond J Chan
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park SA5042, Australia.
| | - Kord M Kober
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA 94143-0610, USA.
| |
Collapse
|
22
|
Khayer N, Jalessi M, Jahanbakhshi A, Tabib Khooei A, Mirzaie M. Nkx3-1 and Fech genes might be switch genes involved in pituitary non-functioning adenoma invasiveness. Sci Rep 2021; 11:20943. [PMID: 34686726 PMCID: PMC8536755 DOI: 10.1038/s41598-021-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are typical pituitary macroadenomas in adults associated with increased mortality and morbidity. Although pituitary adenomas are commonly considered slow-growing benign brain tumors, numerous of them possess an invasive nature. Such tumors destroy sella turcica and invade the adjacent tissues such as the cavernous sinus and sphenoid sinus. In these cases, the most critical obstacle for complete surgical removal is the high risk of damaging adjacent vital structures. Therefore, the development of novel therapeutic strategies for either early diagnosis through biomarkers or medical therapies to reduce the recurrence rate of NFPAs is imperative. Identification of gene interactions has paved the way for decoding complex molecular mechanisms, including disease-related pathways, and identifying the most momentous genes involved in a specific disease. Currently, our knowledge of the invasion of the pituitary adenoma at the molecular level is not sufficient. The current study aimed to identify critical biomarkers and biological pathways associated with invasiveness in the NFPAs using a three-way interaction model for the first time. In the current study, the Liquid association method was applied to capture the statistically significant triplets involved in NFPAs invasiveness. Subsequently, Random Forest analysis was applied to select the most important switch genes. Finally, gene set enrichment (GSE) and gene regulatory network (GRN) analyses were applied to trace the biological relevance of the statistically significant triplets. The results of this study suggest that "mRNA processing" and "spindle organization" biological processes are important in NFAPs invasiveness. Specifically, our results suggest Nkx3-1 and Fech as two switch genes in NFAPs invasiveness that may be potential biomarkers or target genes in this pathology.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabib Khooei
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Xie Y, Luo X, He H, Tang M. Novel Insight Into the Role of Immune Dysregulation in Amyotrophic Lateral Sclerosis Based on Bioinformatic Analysis. Front Neurosci 2021; 15:657465. [PMID: 33994932 PMCID: PMC8119763 DOI: 10.3389/fnins.2021.657465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. The causative pathogenic mechanisms in ALS remain unclear, limiting the development of treatment strategies. Neuroinflammation and immune dysregulation were involved in the disease onset and progression of several neurodegenerative disorders, including ALS. In this study, we carried out a bioinformatic analysis using publicly available datasets from Gene Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of multiple types of immune cells, including macrophages, type-1/17 T helper cells, and activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted gene correlation network analysis identified immune genes associated with ALS. The Gene Ontology analysis revealed that receptor and cytokine activities were the most highly enriched terms. Pathway analysis showed that these genes were enriched not only in immune-related pathways, such as cytokine-cytokine receptor interaction, but also in PI3K-AKT and MAPK signaling pathways. Nineteen immune-related genes (C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1, TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as hub genes based on least absolute shrinkage and selection operator analysis. This gene signature could differentiate ALS patients from non-neurological controls (p < 0.001) and predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In conclusion, our study provides potential biomarkers of ALS for disease diagnosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Tang
- Department of Geriatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Characterization of pathways involved in colorectal cancer using real-time RT-PCR gene expression data. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:123-131. [PMID: 33968339 PMCID: PMC8101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM Efforts to explore biomarkers and biological pathways involved in the disease are needed to improve colorectal cancer (CRC) diagnosis and alternative treatments. BACKGROUND The fourth common malignancy in the world is colorectal cancer. The over-all burden is predicted to rise by 2030. METHODS In the current study, nine genes were selected. Previously, a panel of genes by Agendia, a classifier of robust gene expression (ColoPrint), was determined to significantly improve the prognostic accuracy of pathologic factors in stage II and III colorectal cancer patients. Five genes, including Ppara, Mctp1, Pyroxd1, Il2r, and Cyfip2, from this panel and four other genes which were not in this panel but were cited abundantly in the literature were selected. Then, expression levels of the selected genes in CRC tissue were compared with levels in adjacent normal tissue. To identify the pathways involved in CRC, gene set enrichment analysis was subsequently performed. Furthermore, to illustrate the relationship between genes in this disease, the cross-shaped co-expression pattern and gene regulatory network were determined using computational methods. RESULTS This research found that the pairs of genes: {IL2R, CYFIP2}, {FOXM1, PPARA}, {MCTP1, CTSC}, and {PYROXD1, CYF1P2} are functionally related. Furthermore, two differentially expressed gene pairs ({FOXM1, PPARA} and {IL2R, CYFIP2}) are involved in the vascular endothelial growth factor receptor signaling pathway and the purine ribonucleoside diphosphate metabolic process, respectively. CONCLUSION This research found that the combination of computational analysis and laboratory data provided the opportunity to better characterize the relation between central colorectal cancer genes as well as possible pathways involved in the colorectal cancer.
Collapse
|