1
|
Arabi S, Heidari-Beni M, Poursafa P, Roshanaei M, Kelishadi R. A review of the potential adverse health impacts of atrazine in humans. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0094. [PMID: 39279140 DOI: 10.1515/reveh-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Atrazine is a widely used chlorinated triazine herbicide in agricultural settings, which has raised concerns over its potential adverse effects on human health. The extensive application of atrazine has resulted in its pervasive presence in the environment, contaminating soil, groundwater, and surface water. While earlier research suggested that atrazine is unlikely to pose a health concern, recent evidence has indicated the necessity to reassess this point of view. This review aims to assess the recent evidence on atrazine's adverse effects on human health, focusing on (i) Cancer, (ii) Metabolic Diseases, (iii) Reproductive System, (iv) Neural System, and (v) Epigenetic Effects. Strategies to mitigate atrazine contamination and limitations of previous studies are also discussed. We strongly believe that further investigation is necessary to determine the potential detrimental consequences of atrazine in humans, particularly in developing countries, where herbicides are widely used without stringent safety regulations. Therefore, the current review will be beneficial for guiding future research and regulatory measures concerning the use of atrazine.
Collapse
Affiliation(s)
- Sina Arabi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minaalsadat Roshanaei
- School of Pharmacy and Pharmaceutical Sciences, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, 48455 Isfahan University of Medical Sciences , Isfahan, Iran
| |
Collapse
|
2
|
McSwiggin H, Magalhães R, Nilsson EE, Yan W, Skinner MK. Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae014. [PMID: 39494159 PMCID: PMC11529619 DOI: 10.1093/eep/dvae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
Environmentally induced epigenetic transgenerational inheritance of phenotypic variation and disease susceptibility requires the germ cell (sperm or egg) transmission of integrated epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA (ncRNA) actions. Previous studies have demonstrated that transgenerational exposure and disease-specific differential DNA methylation regions (DMRs) in sperm are observed and that ncRNA-mediated DNA methylation occurs. The current study was designed to determine if transgenerational exposure-specific ncRNAs exist in sperm. Specifically, toxicants with distinct mechanisms of action including the fungicide vinclozolin (anti-androgenic), pesticide dichlorodiphenyltrichloroethane (estrogenic), herbicide atrazine (endocrine disruptor at cyclic adenosine monophosphate level), and hydrocarbon mixture jet fuel (JP8) (aryl hydrocarbon receptor disruptor) were used to promote transgenerational disease phenotypes in F3 generation outbred rats. New aliquots of sperm, previously collected and used for DNA methylation analyses, were used in the current study for ncRNA sequencing analyses of nuclear RNA. Significant changes in transgenerational sperm ncRNA were observed for each transgenerational exposure lineage. The majority of ncRNA was small noncoding RNAs including piwi-interacting RNA, tRNA-derived small RNAs, microRNAs, rRNA-derived small RNA, as well as long ncRNAs. Although there was some overlap among the different classes of ncRNA across the different exposures, the majority of differentially expressed ncRNAs were exposure-specific with no overlapping ncRNA between the four different exposure lineages in the transgenerational F3 generation sperm nuclear ncRNAs. The ncRNA chromosomal locations and gene associations were identified for a small number of differential expressed ncRNA. Interestingly, an overlap analysis between the transgenerational sperm DMRs and ncRNA chromosomal locations demonstrated small populations of overlapping ncRNA, but a large population of non-overlapping ncRNAs. Observations suggest that transgenerational sperm ncRNAs have both exposure-specific populations within the different classes of ncRNA, as well as some common populations of ncRNAs among the different exposures. The lack of co-localization of many of the ncRNAs with previously identified transgenerational DMRs suggests a distal integration of the different epigenetic mechanisms. The potential use of ncRNA analyses for transgenerational toxicant exposure assessment appears feasible.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Rubens Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
3
|
Mavaie P, Holder L, Skinner M. Identifying unique exposure-specific transgenerational differentially DNA methylated region epimutations in the genome using hybrid deep learning prediction models. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad007. [PMID: 38130880 PMCID: PMC10735314 DOI: 10.1093/eep/dvad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Exposure to environmental toxicants can lead to epimutations in the genome and an increase in differential DNA methylated regions (DMRs) that have been linked to increased susceptibility to various diseases. However, the unique effect of particular toxicants on the genome in terms of leading to unique DMRs for the toxicants has been less studied. One hurdle to such studies is the low number of observed DMRs per toxicants. To address this hurdle, a previously validated hybrid deep-learning cross-exposure prediction model is trained per exposure and used to predict exposure-specific DMRs in the genome. Given these predicted exposure-specific DMRs, a set of unique DMRs per exposure can be identified. Analysis of these unique DMRs through visualization, DNA sequence motif matching, and gene association reveals known and unknown links between individual exposures and their unique effects on the genome. The results indicate the potential ability to define exposure-specific epigenetic markers in the genome and the potential relative impact of different exposures. Therefore, a computational approach to predict exposure-specific transgenerational epimutations was developed, which supported the exposure specificity of ancestral toxicant actions and provided epigenome information on the DMR sites predicted.
Collapse
Affiliation(s)
- Pegah Mavaie
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752, USA
| | - Lawrence Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752, USA
| | - Michael Skinner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
4
|
Crisóstomo L, Oliveira PF, Alves MG. A systematic scientometric review of paternal inheritance of acquired metabolic traits. BMC Biol 2023; 21:255. [PMID: 37953286 PMCID: PMC10641967 DOI: 10.1186/s12915-023-01744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Kaufman J, Khan M, Shepard Payne J, Mancini J, Summers White Y. Transgenerational Inheritance and Systemic Racism in America. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2023. [DOI: 10.1176/appi.prcp.20220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Affiliation(s)
- Joan Kaufman
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Maria Khan
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Jennifer Shepard Payne
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Julia Mancini
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| | - Yvonne Summers White
- Center for Child and Family Traumatic Stress, Kennedy Krieger Institute and Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD (J. Kaufman, M. Khan, J. Shepard Payne, J. Mancini, Y. Summers White)
| |
Collapse
|
6
|
Beck D, Nilsson EE, Ben Maamar M, Skinner MK. Environmental induced transgenerational inheritance impacts systems epigenetics in disease etiology. Sci Rep 2022; 12:5452. [PMID: 35440735 PMCID: PMC9018793 DOI: 10.1038/s41598-022-09336-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Environmental toxicants have been shown to promote the epigenetic transgenerational inheritance of disease through exposure specific epigenetic alterations in the germline. The current study examines the actions of hydrocarbon jet fuel, dioxin, pesticides (permethrin and methoxychlor), plastics, and herbicides (glyphosate and atrazine) in the promotion of transgenerational disease in the great grand-offspring rats that correlates with specific disease associated differential DNA methylation regions (DMRs). The transgenerational disease observed was similar for all exposures and includes pathologies of the kidney, prostate, and testis, pubertal abnormalities, and obesity. The disease specific DMRs in sperm were exposure specific for each pathology with negligible overlap. Therefore, for each disease the DMRs and associated genes were distinct for each exposure generational lineage. Observations suggest a large number of DMRs and associated genes are involved in a specific pathology, and various environmental exposures influence unique subsets of DMRs and genes to promote the transgenerational developmental origins of disease susceptibility later in life. A novel multiscale systems biology basis of disease etiology is proposed involving an integration of environmental epigenetics, genetics and generational toxicology.
Collapse
Affiliation(s)
- Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
7
|
Ravula AR, Yenugu S. Transgenerational effects on the fecundity and sperm proteome in rats exposed to a mixture of pyrethroids at doses similar to human consumption. CHEMOSPHERE 2022; 290:133242. [PMID: 34896426 DOI: 10.1016/j.chemosphere.2021.133242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pyrethroid based pesticide usage for crop protection resulted in percolation of these compounds into the food chain. Toxicological studies that reflect exposure to pyrethroids through food in the human settings are rare. We conducted animal experimentations using a mixture of pyrethroids that is equivalent to the amount consumed by average individual through rice and vegetables in the Indian context. Male rats treated with a mixture of pyrethroids for 1-12 months displayed decreased transgenerational fecundity, sperm count, activities of 3β- and 17β-HSD and perturbed hormonal profile. At the transcriptome level, the expression of genes involved in spermatogenesis, steroidogenesis, germ cell epigenetic modulators and germ cell apoptosis were altered in the testis. In the sperm lysates of control rats, 506 proteins identified by mass spectrometry. The differential expression of these proteins (treated/control ratio) in the pyrethroid exposed rats was analyzed. Among the 506 proteins, 153 had a ratio of 0; 41 had a ratio ranging from >0 to <0.5; and 10 had a ratio >2.0. Interestingly, the differential expression was transgenerational. 26 proteins that were differentially expressed in the sperm of F0 treated rats continued to remain the same in the F1, F2 and F3 generations, while the differential expression was maintained up to F2 and F1 generations for 46 and 2 proteins respectively. Some of the proteins that continued to be differentially expressed in the later generations are reported to have critical roles in male reproduction. These results indicate that the reduced fecundity observed in the later generations could be due to the continued differential expression that was initiated by pyrethroid treatment in the F0 rats. Results of our study, for the first time, provide evidence that long-term exposure to pyrethroids affects transgenerational fecundity manifested by changes in sperm proteome.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
8
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac001. [PMID: 35186326 PMCID: PMC8848501 DOI: 10.1093/eep/dvac001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 02/03/2022] [Indexed: 05/27/2023]
Abstract
Many environmental toxicants have been shown to be associated with the transgenerational inheritance of increased disease susceptibility. This review describes the generational toxicity of some of these chemicals and their role in the induction of epigenetic transgenerational inheritance of disease. Epigenetic factors include DNA methylation, histone modifications, retention of histones in sperm, changes to chromatin structure, and expression of non-coding RNAs. For toxicant-induced epigenetic transgenerational inheritance to occur, exposure to a toxicant must result in epigenetic changes to germ cells (sperm or eggs) since it is the germ cells that carry molecular information to subsequent generations. In addition, the epigenetic changes induced in transgenerational generation animals must cause alterations in gene expression in these animals' somatic cells. In some cases of generational toxicology, negligible changes are seen in the directly exposed generations, but increased disease rates are seen in transgenerational descendants. Governmental policies regulating toxicant exposure should take generational effects into account. A new approach that takes into consideration generational toxicity will be needed to protect our future populations.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- **Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +509-335-1524; E-mail:
| |
Collapse
|
10
|
Cheuquemán C, Maldonado R. Non-coding RNAs and chromatin: key epigenetic factors from spermatogenesis to transgenerational inheritance. Biol Res 2021; 54:41. [PMID: 34930477 PMCID: PMC8686607 DOI: 10.1186/s40659-021-00364-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular fate and gene expression patterns are modulated by different epigenetic factors including non-coding RNAs (ncRNAs) and chromatin organization. Both factors are dynamic throughout male germ cell differentiation on the seminiferous tubule, despite the transcriptional inactivation in the last stages of spermatogenesis. Sperm maturation during the caput-to-cauda transit on the epididymis involves changes in chromatin organization and the soma-to-germ line transference of ncRNAs that are essential to obtain a functional sperm for fertilization and embryo development. Here, the male environment (diseases, drugs, mental stress) is crucial to modulate these epigenetic factors throughout sperm maturation, affecting the corresponding offspring. Paternal transgenerational inheritance has been directly related to sperm epigenetic changes, most of them associated with variations in the ncRNA content and chromatin marks. Our aim is to give an overview about how epigenetics, focused on ncRNAs and chromatin, is pivotal to understand spermatogenesis and sperm maturation, and how the male environment impacts the sperm epigenome modulating the offspring gene expression pattern.
Collapse
Affiliation(s)
- Carolina Cheuquemán
- Núcleo de Ciencias Biológicas, Dirección de Núcleos Transversales, Facultad de estudios Interdisciplinarios, Universidad Mayor, Temuco, Chile
| | - Rodrigo Maldonado
- Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
Mavaie P, Holder L, Beck D, Skinner MK. Predicting environmentally responsive transgenerational differential DNA methylated regions (epimutations) in the genome using a hybrid deep-machine learning approach. BMC Bioinformatics 2021; 22:575. [PMID: 34847877 PMCID: PMC8630850 DOI: 10.1186/s12859-021-04491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Deep learning is an active bioinformatics artificial intelligence field that is useful in solving many biological problems, including predicting altered epigenetics such as DNA methylation regions. Deep learning (DL) can learn an informative representation that addresses the need for defining relevant features. However, deep learning models are computationally expensive, and they require large training datasets to achieve good classification performance. RESULTS One approach to addressing these challenges is to use a less complex deep learning network for feature selection and Machine Learning (ML) for classification. In the current study, we introduce a hybrid DL-ML approach that uses a deep neural network for extracting molecular features and a non-DL classifier to predict environmentally responsive transgenerational differential DNA methylated regions (DMRs), termed epimutations, based on the extracted DL-based features. Various environmental toxicant induced epigenetic transgenerational inheritance sperm epimutations were used to train the model on the rat genome DNA sequence and use the model to predict transgenerational DMRs (epimutations) across the entire genome. CONCLUSION The approach was also used to predict potential DMRs in the human genome. Experimental results show that the hybrid DL-ML approach outperforms deep learning and traditional machine learning methods.
Collapse
Affiliation(s)
- Pegah Mavaie
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164-2752, USA
| | - Lawrence Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164-2752, USA.
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
12
|
Galván I, Schwartz TS, Garland T. Evolutionary physiology at 30+: Has the promise been fulfilled?: Advances in Evolutionary Physiology: Advances in Evolutionary Physiology. Bioessays 2021; 44:e2100167. [PMID: 34802161 DOI: 10.1002/bies.202100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, Madrid, Spain
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
13
|
Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. ENVIRONMENTAL RESEARCH 2021; 192:110279. [PMID: 33039529 PMCID: PMC8130889 DOI: 10.1016/j.envres.2020.110279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 05/15/2023]
Abstract
Dioxin was historically one of the most common industrial contaminants with several major industry accidents, as well as governmental actions involving military service, having exposed large numbers of the worldwide population over the past century. Previous rat studies have demonstrated the ability of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) exposure to promote the epigenetic transgenerational inheritance of disease susceptibility in subsequent generations. The types of disease previously observed include puberty abnormalities, testis, ovary, kidney, prostate and obesity pathologies. The current study was designed to use an epigenome-wide association study (EWAS) to identify potential sperm DNA methylation biomarkers for specific transgenerational diseases. Therefore, the transgenerational F3 generation dioxin lineage male rats with and without a specific disease were compared to identify differential DNA methylation regions (DMRs) as biomarkers for disease. The genomic features of the disease-specific DMRs were characterized. Observations demonstrate that disease-specific epimutation DMRs exist for the transgenerational dioxin lineage rats that can potentially be used as epigenetic biomarkers for testis, kidney, prostate and obesity diseases. These disease-specific DMRs were associated with genes that have previously been shown to be linked with the specific diseases. This EWAS for transgenerational disease identified potential epigenetic biomarkers and provides the proof of concept of the potential to develop similar biomarkers for humans to diagnose disease susceptibilities and facilitate preventative medicine.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Jennifer L M Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
14
|
Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, McBirney M, Skinner MK. Epigenome-wide association study for atrazine induced transgenerational DNA methylation and histone retention sperm epigenetic biomarkers for disease. PLoS One 2020; 15:e0239380. [PMID: 33326428 PMCID: PMC7743986 DOI: 10.1371/journal.pone.0239380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atrazine is a common agricultural herbicide previously shown to promote epigenetic transgenerational inheritance of disease to subsequent generations. The current study was designed as an epigenome-wide association study (EWAS) to identify transgenerational sperm disease associated differential DNA methylation regions (DMRs) and differential histone retention regions (DHRs). Gestating female F0 generation rats were transiently exposed to atrazine during the period of embryonic gonadal sex determination, and then subsequent F1, F2, and F3 generations obtained in the absence of any continued exposure. The transgenerational F3 generation males were assessed for disease and sperm collected for epigenetic analysis. Pathology was observed in pubertal onset and for testis disease, prostate disease, kidney disease, lean pathology, and multiple disease. For these pathologies, sufficient numbers of individual males with only a single specific disease were identified. The sperm DNA and chromatin were isolated from adult one-year animals with the specific diseases and analyzed for DMRs with methylated DNA immunoprecipitation (MeDIP) sequencing and DHRs with histone chromatin immunoprecipitation (ChIP) sequencing. Transgenerational F3 generation males with or without disease were compared to identify the disease specific epimutation biomarkers. All pathologies were found to have disease specific DMRs and DHRs which were found to predominantly be distinct for each disease. No common DMRs or DHRs were found among all the pathologies. Epimutation gene associations were identified and found to correlate to previously known disease linked genes. This is one of the first observations of potential sperm disease biomarkers for histone retention sites. Although further studies with expanded animal numbers are required, the current study provides evidence the EWAS analysis is effective for the identification of potential pathology epimutation biomarkers for disease susceptibility.
Collapse
Affiliation(s)
- Jennifer L. M. Thorson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|