1
|
Dobre MA, Ahlawat S, Schelling JR. Chronic kidney disease associated cardiomyopathy: recent advances and future perspectives. Curr Opin Nephrol Hypertens 2024; 33:203-211. [PMID: 38193308 PMCID: PMC10872957 DOI: 10.1097/mnh.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cardiomyopathy in chronic kidney disease (CKD) is a complex condition with multiple triggers and poor prognosis. This review provides an overview of recent advances in CKD-associated cardiomyopathy, with a focus on pathophysiology, newly discovered biomarkers and potential therapeutic targets. RECENT FINDINGS CKD is associated with a specific pattern of myocardial hypertrophy and fibrosis, resulting in diastolic and systolic dysfunction, and often triggered by nonatherosclerotic processes. Novel biomarkers, including amino-terminal type III procollagen peptide (PIIINP), carboxy-terminal type I procollagen peptide (PICP), FGF23, marinobufagenin, and several miRNAs, show promise for early detection and risk stratification. Treatment options for CKD-associated cardiomyopathy are limited. Sodium glucose cotransporter-2 inhibitors have been shown to reduce left ventricle hypertrophy and improve ejection fraction in individuals with diabetes and mild CKD, and are currently under investigation for more advanced stages of CKD. In hemodialysis patients calcimimetic etelcalcetide resulted in a significant reduction in left ventricular mass. SUMMARY CKD-associated cardiomyopathy is a common and severe complication in CKD. The identification of novel biomarkers may lead to future therapeutic targets. Randomized clinical trials in individuals with more advanced CKD would be well posed to expand treatment options for this debilitating condition.
Collapse
Affiliation(s)
- Mirela A Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
| | - Shruti Ahlawat
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
| | - Jeffrey R Schelling
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Kerr KF. Net Reclassification Index Statistics Do Not Help Assess New Risk Models. Radiology 2023; 306:e222343. [PMID: 36378029 PMCID: PMC9968768 DOI: 10.1148/radiol.222343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
When evaluating a new risk factor for disease (eg, a measurement from imaging studies), many investigators examine its value above and beyond existing biomarkers and risk factors. They compare the performance of an "old" risk model using established predictors and a "new" risk model that adds the new factor. Net reclassification index (NRI) statistics are a family of metrics for comparing two risk models. NRI statistics became popular in some medical fields and have appeared in high-impact journals. This article reviews NRI statistics and describes several issues with them. Problems include unacceptable statistical behavior, incorrect statistical inferences, and lack of interpretability. NRI statistics are unhelpful (at best) and misleading (at worst).
Collapse
Affiliation(s)
- Kathleen F. Kerr
- From the Department of Biostatistics, University of Washington School
of Public Health, 3980 15th Ave NE, Box 351617, Seattle, WA 98195
| |
Collapse
|
3
|
Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, Bhatraju PK, Ikizler TA, Siew ED, Ware LB, Liu KD, Go AS, Kaufman JS, Kimmel PL, Chinchilli VM, Cantley LG, Parikh CR. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 2021; 131:139927. [PMID: 33290282 PMCID: PMC7843225 DOI: 10.1172/jci139927] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTIONAcute kidney injury and chronic kidney disease (CKD) are common in hospitalized patients. To inform clinical decision making, more accurate information regarding risk of long-term progression to kidney failure is required.METHODSWe enrolled 1538 hospitalized patients in a multicenter, prospective cohort study. Monocyte chemoattractant protein 1 (MCP-1/CCL2), uromodulin (UMOD), and YKL-40 (CHI3L1) were measured in urine samples collected during outpatient follow-up at 3 months. We followed patients for a median of 4.3 years and assessed the relationship between biomarker levels and changes in estimated glomerular filtration rate (eGFR) over time and the development of a composite kidney outcome (CKD incidence, CKD progression, or end-stage renal disease). We paired these clinical studies with investigations in mouse models of renal atrophy and renal repair to further understand the molecular basis of these markers in kidney disease progression.RESULTSHigher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the composite renal outcome, whereas higher UMOD levels were associated with smaller eGFR declines and decreased incidence of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with traditional clinical variables alone. The mouse model of renal atrophy showed greater Ccl2 and Chi3l1 mRNA expression in infiltrating macrophages and neutrophils, respectively, and evidence of progressive renal fibrosis compared with the repair model. The repair model showed greater Umod expression in the loop of Henle and correspondingly less fibrosis.CONCLUSIONSBiomarker levels at 3 months after hospitalization identify patients at risk for kidney disease progression.FUNDINGNIH.
Collapse
Affiliation(s)
- Jeremy Puthumana
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Leyuan Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X. Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Pavan K. Bhatraju
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T. Alp Ikizler
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Health Services, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen D. Liu
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
| | - Alan S. Go
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - James S. Kaufman
- Division of Nephrology, Veterans Affairs New York Harbor Health Care System, New York University School of Medicine, New York, New York, USA
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lloyd G. Cantley
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|