1
|
Shi J, Wang Y, Fan X, Li R, Yu C, Peng Z, Gao Y, Liu Z, Duan L. A novel plant growth regulator B2 mediates drought resistance by regulating reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and starch metabolism pathways in Carex breviculmis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108860. [PMID: 38936070 DOI: 10.1016/j.plaphy.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Drought is one of the most common environmental stressors that severely threatens plant growth, development, and productivity. B2 (2,4-dichloroformamide cyclopropane acid), a novel plant growth regulator, plays an essential role in drought adaptation, significantly enhancing the tolerance of Carex breviculmis seedlings. Its beneficial effects include improved ornamental value, sustained chlorophyll content, increased leaf dry weight, elevated relative water content, and enhanced root activity under drought conditions. B2 also directly scavenges hydrogen peroxide and superoxide anion contents while indirectly enhancing the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) to detoxify reactive oxygen species (ROS) oxidative damage. Transcriptome analysis demonstrated that B2 activates drought-responsive transcription factors (AP2/ERF-ERF, WRKY, and mTERF), leading to significant upregulation of genes associated with phenylpropanoid biosynthesis (HCT, POD, and COMT). Additionally, these transcription factors were found to suppress the degradation of starch. B2 regulates phytohormone signaling related-genes, leading to an increase in abscisic acid contents in drought-stressed plants. Collectively, these findings offer new insights into the intricate mechanisms underlying C. breviculmis' resistance to drought damage, highlighting the potential application of B2 for future turfgrass establishment and management with enhanced drought tolerance.
Collapse
Affiliation(s)
- Jiannan Shi
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ye Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xifeng Fan
- Institute of Grassland Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Runzhi Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Chunxin Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuerong Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ziyan Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liusheng Duan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China; Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100093, China.
| |
Collapse
|
2
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
3
|
Cao L, Zou J, Qin B, Bei S, Ma W, Yan B, Jin X, Zhang Y. Response of exogenous melatonin on transcription and metabolism of soybean under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14038. [PMID: 37882298 DOI: 10.1111/ppl.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Amino acid metabolism is an important factor in regulating nitrogen source assimilation and source/sink transport in soybean. Melatonin can improve plant stress resistance, but whether it affects amino acid metabolism is not known. Therefore, this study investigated whether exogenous melatonin had an effect on amino acid metabolism of soybean under drought conditions and explored its relationship with yield. The treatments were normal water supply treatment (WW), drought stress treatment (D), drought stress and melatonin treatment group (D + M), sprayed with 100 μmol/L melatonin. The effects of melatonin on amino acid metabolism and grain filling were studied by physiological and omics experiments using Kangxian 9 (drought-sensitive variety) and Suinong 26 (drought-resistant variety) soybean cultivars. The results showed that drought stress decreased the activity of carbon and nitrogen metabolizing enzymes, which inhibited the accumulation of dry matter and protein, and decreased the yield. In the drought-sensitive soybean variety, glycoenzymes and amino acid synthetases synthetic genes were upregulated in melatonin-treated soybeans, hence carbon and nitrogen metabolism enzyme activity increased, increasing the carbohydrate and amino acid contents simultaneously. This resulted in higher dry matter and yield than drought-stressed soybean not treated with melatonin. In the drought-resistant variety, the grain weight per plant increased by 7.98% and 6.57% in 2020 and 2021, respectively, while it increased by 23.20% and 14.07% in the drought-sensitive variety during the respective years. In conclusion, melatonin treatment can enhance the activity of nitrogen and carbon metabolism and amino acid content by upregulating the expression of soybean metabolic pathway and related genes, thus increasing the yield of soybean under drought stress.
Collapse
Affiliation(s)
- Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingnan Zou
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Bin Qin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shijun Bei
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Weiran Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xijun Jin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Technology Research Center, Daqing, China
| |
Collapse
|
4
|
Shi RJ, Ye MY, Liu Y, Wu QS, Abd Allah EF, Zhou N. Exogenous Melatonin Regulates Physiological Responses and Active Ingredient Levels in Polygonum cuspidatum under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112141. [PMID: 37299122 DOI: 10.3390/plants12112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Polygonum cuspidatum, an important medicinal plant, is rich in resveratrol and polydatin, but it frequently suffers from drought stress in the nursery stage, which inhibits the plant's growth, active components concentrations, and the price of rhizome in the later stage. The purpose of this study was to analyze how exogenous 100 mM melatonin (MT) (an indole heterocyclic compound) affected biomass production, water potential, gas exchange, antioxidant enzyme activities, active components levels, and resveratrol synthase (RS) gene expression of P. cuspidatum seedlings growing under well-watered and drought stress conditions. The 12-week drought treatment negatively affected the shoot and root biomass, leaf water potential, and leaf gas exchange parameters (photosynthetic rate, stomatal conductance, and transpiration rate), whereas the application of exogenous MT significantly increased these variables of stressed and non-stressed seedlings, accompanied by higher increases in the biomass, photosynthetic rate, and stomatal conductance under drought versus well-watered conditions. Drought treatment raised the activities of superoxide dismutase, peroxidase, and catalase in the leaves, while the MT application increased the activities of the three antioxidant enzymes regardless of soil moistures. Drought treatment reduced root chrysophanol, emodin, physcion, and resveratrol levels, while it dramatically promoted root polydatin levels. At the same time, the application of exogenous MT significantly increased the levels of the five active components, regardless of soil moistures, with the exception of no change in the emodin under well-watered conditions. The MT treatment also up-regulated the relative expression of PcRS under both soil moistures, along with a significantly positive correlation between the relative expression of PcRS and resveratrol levels. In conclusion, exogenous MT can be employed as a biostimulant to enhance plant growth, leaf gas exchange, antioxidant enzyme activities, and active components of P. cuspidatum under drought stress conditions, which provides a reference for drought-resistant cultivation of P. cuspidatum.
Collapse
Affiliation(s)
- Ru-Jie Shi
- College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ming-Yan Ye
- College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Yue Liu
- College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nong Zhou
- College of Food and Biology Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| |
Collapse
|
5
|
Wang Y, Wang J, Guo H, Wu X, Hao M, Zhang R. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107723. [PMID: 37163805 DOI: 10.1016/j.plaphy.2023.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Melatonin (MT) is essential for plant development and drought adaptation. However, the molecular and metabolic mechanisms underlying MT-induced drought tolerance in maize roots remain largely unclear. Herein, we investigated the effects of MT on drought tolerance in maize roots using integrated transcriptomic and metabolomic analyses, and identified MT-induced genes and metabolites associated with drought resistance. Compared with the untreated control plants, MT application alleviated the deleterious effects of drought on roots, by decreasing the malondialdehyde level and increasing the solute potential, eventually promoting root growth. Transcriptome and metabolome analysis demonstrated that MT significantly upregulates the expression of genes related to flavonoid biosynthesis (PAL, C4H, 4CL, HCT, CHS, CHI, F3'5'H, and DFR), activates drought-responsive transcription factors (ERFs, NACs, MYBs, and bHLHs), and regulates hormone signaling-related genes, especially ethylene response factors (ERF4, ERF81, and ERF110). Moreover, MT increased the accumulation of flavonoid metabolites, particularly apigenin, luteolin, and quercetin, under drought-stress conditions. These findings were further supported by quantitative real-time polymerase chain reaction analysis and total flavonoid measurements. Altogether, our findings suggest that MT promotes maize root growth during drought by regulating flavonoid synthesis pathways, transcription factors, and plant hormone signals. This study provides new insights into the complex mechanisms by which MT enhances crop resistance to drought damage.
Collapse
Affiliation(s)
- Yifan Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Jiarui Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Haoxue Guo
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Miaoyi Hao
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China.
| |
Collapse
|
6
|
Wang J, Gao X, Wang X, Song W, Wang Q, Wang X, Li S, Fu B. Exogenous melatonin ameliorates drought stress in Agropyron mongolicum by regulating flavonoid biosynthesis and carbohydrate metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1051165. [PMID: 36600908 PMCID: PMC9806343 DOI: 10.3389/fpls.2022.1051165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Drought is one of the most common abiotic stressors in plants. Melatonin (MT) is a high-efficiency and low-toxicity growth regulator that plays an important role in plant responses to drought stress. As a wild relative of wheat, Agropyron mongolicum has become an important species for the improvement of degraded grasslands and the replanting of sandy grasslands. However, the physiological and molecular mechanisms by which exogenous MT regulates drought stress in A. mongolicum remain unclear. To assess the effectiveness of MT intervention (100 mg·L-1), polyethylene glycol 6000 was used to simulate drought stress, and its ameliorating effects on drought stress in A. mongolicum seedlings were investigated through physiology, transcriptomics, and metabolomics. Physiological analysis indicated that MT treatment increased the relative water content and chlorophyll content and decreased the relative conductivity of A. mongolicum seedlings. Additionally, MT decreased malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation by enhancing antioxidant enzyme activities. The transcriptome and metabolite profiling analysis of A. mongolicum seedlings treated with and without MT under drought stress identified the presence of 13,466 differentially expressed genes (DEGs) and 271 differentially expressed metabolites (DEMs). The integrated analysis of transcriptomics and metabolomics showed that DEGs and DEMs participated in diverse biological processes, such as flavonoid biosynthesis and carbohydrate metabolism. Moreover, MT may be involved in regulating the correlation of DEGs and DEMs in flavonoid biosynthesis and carbohydrate metabolism during drought stress. In summary, this study revealed the physiological and molecular regulatory mechanisms of exogenous MT in alleviating drought stress in A. mongolicum seedlings, and it provides a reference for the development and utilization of MT and the genetic improvement of drought tolerance in plants from arid habitats.
Collapse
Affiliation(s)
- Jing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Xing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Wenxue Song
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Qin Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xucheng Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Zhang Q, Zheng G, Wang Q, Zhu J, Zhou Z, Zhou W, Xu J, Sun H, Zhong J, Gu Y, Yin Z, Du YL, Du JD. Molecular mechanisms of flavonoid accumulation in germinating common bean (Phaseolus vulgaris) under salt stress. Front Nutr 2022; 9:928805. [PMID: 36105573 PMCID: PMC9465018 DOI: 10.3389/fnut.2022.928805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are important secondary metabolites, active biomolecules in germinating beans, and have prominent applications in food and medicine due to their antioxidant effects. Rutin is a plant flavonoid with a wide biological activity range. In this study, flavonoid (rutin) accumulation and its related molecular mechanisms in germinating common bean (Phaseolus vulgaris) were observed at different time points (0–120 h) under salt stress (NaCl). The rutin content increased from germination onset until 96 h, after which a reducing trend was observed. Metabolome analysis showed that salt stress alters flavonoid content by regulating phenylpropanoid (ko00940) and flavonoid (ko00941) biosynthesis pathways, as well as their enzyme activities, including cinnamyl-alcohol dehydrogenase (CAD), peroxidase (POD), chalcone isomerase (CHI), and flavonol synthase (FLS). The RNA-seq and quantitative real-time PCR (qRT-PCR) analyses also showed that these two pathways were linked to changes in flavonoid content following salt treatment. These results reveal that salt stress effectively enhanced rutin content accumulation in germinating beans, hence it could be employed to enhance the functional quality of germinating common beans.
Collapse
Affiliation(s)
- Qi Zhang
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guangyue Zheng
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qi Wang
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jixing Zhu
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhiheng Zhou
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenshuo Zhou
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junjie Xu
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Haoyue Sun
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jingwen Zhong
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhua Gu
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhengong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yan-li Du
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ji-dao Du
- Legume Crop Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, China
- National Cereals Technology Engineering Research Center, Daqing, China
- *Correspondence: Ji-dao Du
| |
Collapse
|
8
|
Xiao R, Han Q, Liu Y, Zhang X, Hao Q, Chai Q, Hao Y, Deng J, Li X, Ji H. Melatonin Attenuates the Urea-Induced Yields Improvement Through Remodeling Transcriptome and Rhizosphere Microbial Community Structure in Soybean. Front Microbiol 2022; 13:903467. [PMID: 35875554 PMCID: PMC9301482 DOI: 10.3389/fmicb.2022.903467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Foliar application of nitrogen to enhance crop productivity has been widely used. Melatonin is an effective regulator in promoting plant growth. However, the effects of melatonin and the combination of melatonin and nitrogen on soybeans yields production remain largely unknown. In this study, a field experiment was conducted to evaluate the effects and mechanisms of spraying leaves with melatonin and urea on soybeans. Foliar application of urea significantly increased soybean yields and melatonin did not affect the yields, while combination of melatonin and urea significantly reduced the yields compared to the application of urea alone. A leaf transcriptional profile was then carried out to reveal the underlying mechanism and found that foliar spraying of urea specifically induced the expression of genes related to amino acid transport and nitrogen metabolism. However, foliar application of melatonin significantly changed the transcriptional pattern established by urea application and increased the expression of genes related to abiotic stress signaling pathways. The effects of melatonin and urea treatment on soil microbiome were also investigated. Neither melatonin nor urea application altered the soil microbial alpha diversity, but melatonin application changed rhizosphere microbial community structure, whereas the combination of melatonin and urea did not. Melatonin or urea application altered the abundance of certain taxa. The number of taxa changed by melatonin treatment was higher than urea treatment. Collectively, our results provide new and valuable insights into the effects of foliar application of melatonin to urea and further show that melatonin exerts strong antagonistic effects on urea-induced soybean yields, gene expression and certain soil microorganisms.
Collapse
Affiliation(s)
- Renhao Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingnan Hao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingqing Chai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongfang Hao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junbo Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongtao Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement. Metabolites 2022; 12:metabo12060511. [PMID: 35736444 PMCID: PMC9228725 DOI: 10.3390/metabo12060511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Climate change continues to threaten global crop output by reducing annual productivity. As a result, global food security is now considered as one of the most important challenges facing humanity. To address this challenge, modern crop breeding approaches are required to create plants that can cope with increased abiotic/biotic stress. Metabolomics is rapidly gaining traction in plant breeding by predicting the metabolic marker for plant performance under a stressful environment and has emerged as a powerful tool for guiding crop improvement. The advent of more sensitive, automated, and high-throughput analytical tools combined with advanced bioinformatics and other omics techniques has laid the foundation to broadly characterize the genetic traits for crop improvement. Progress in metabolomics allows scientists to rapidly map specific metabolites to the genes that encode their metabolic pathways and offer plant scientists an excellent opportunity to fully explore and rationally harness the wealth of metabolites that plants biosynthesize. Here, we outline the current application of advanced metabolomics tools integrated with other OMICS techniques that can be used to: dissect the details of plant genotype–metabolite–phenotype interactions facilitating metabolomics-assisted plant breeding for probing the stress-responsive metabolic markers, explore the hidden metabolic networks associated with abiotic/biotic stress resistance, facilitate screening and selection of climate-smart crops at the metabolite level, and enable accurate risk-assessment and characterization of gene edited/transgenic plants to assist the regulatory process. The basic concept behind metabolic editing is to identify specific genes that govern the crucial metabolic pathways followed by the editing of one or more genes associated with those pathways. Thus, metabolomics provides a superb platform for not only rapid assessment and commercialization of future genome-edited crops, but also for accelerated metabolomics-assisted plant breeding. Furthermore, metabolomics can be a useful tool to expedite the crop research if integrated with speed breeding in future.
Collapse
|
10
|
Wei X, Klinkhamer PGL, Mulder PPJ, van der Veen-van Wijk K, Vrieling K. Seasonal variation in defence compounds: A case study on pyrrolizidine alkaloids of clones of Jacobaea vulgaris, Jacobaea aquatica and their hybrids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111067. [PMID: 34763859 DOI: 10.1016/j.plantsci.2021.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Peter G L Klinkhamer
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Karin van der Veen-van Wijk
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
11
|
Cao L, Qin B, Zhang YX. Exogenous application of melatonin may contribute to enhancement of soybean drought tolerance via its effects on glucose metabolism. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Liang Cao
- Soybean Cultivation Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Bin Qin
- Soybean Cultivation Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yu Xian Zhang
- Soybean Cultivation Laboratory, Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| |
Collapse
|
12
|
Yin Y, Liu Y, Cheng C, Yang Z, Luo Z, Fang W. iTRAQ-based proteomic and physiological analyses of broccoli sprouts in response to exogenous melatonin with ZnSO 4 stress. RSC Adv 2021; 11:12336-12347. [PMID: 35423784 PMCID: PMC8696995 DOI: 10.1039/d1ra00696g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
Exogenous melatonin (10 μM) enhances ZnSO4 (4 mM) stress tolerance and regulates the isothiocyanate content of broccoli sprouts. Nevertheless, the molecular mechanism underlying the role of melatonin in isothiocyanate metabolism under ZnSO4 stress is unclear. The effects of exogenous melatonin on growth and isothiocyanate metabolism in broccoli sprouts under ZnSO4 stress during germination were investigated by physio-biochemical methods, quantification of relative gene expression levels, and the isobaric tags for the relative and absolute quantitation (iTRAQ) labelling technique. Compared with sprouts under ZnSO4 stress alone, sprout length, fresh weight and free calcium content increased significantly in sprouts under ZnSO4 stress plus melatonin treatment while electrolyte leakage and malonaldehyde content decreased. The glucosinolate content and myrosinase activity also significantly increased in sprouts under ZnSO4 stress plus melatonin treatment compared with the control, and thus the isothiocyanate and sulforaphane content increased markedly. Meanwhile, the expression of glucoraphanin biosynthesis genes, such as MYB28, CYP83A1, AOP2, BoSAT1, and BoHMT1 was significantly induced by melatonin in sprouts under ZnSO4 stress. Furthermore, compared with sprouts under ZnSO4 stress alone, a total of 145 proteins in broccoli sprouts under ZnSO4 stress plus melatonin treatment showed differential relative abundances. These proteins were divided into 13 functional classes and revealed that pathways for sulfur metabolism, glucosinolate biosynthesis, selenocompound metabolism, biosynthesis of secondary metabolites and peroxisome were significantly enriched. The present study indicates that exogenous melatonin alleviates the adverse effects of ZnSO4 stress on sprout growth and promotes glucoraphanin biosynthesis and the hydrolysis of glucoraphanin to form isothiocyanates in broccoli sprouts.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Yin Liu
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Chao Cheng
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Zhenlan Luo
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University Yangzhou Jiangsu 210095 People's Republic of China +86-514-89786551 +86-514-89786551
| |
Collapse
|