1
|
Shareef O, Shareef S, Saeed HN. New Frontiers in Acanthamoeba Keratitis Diagnosis and Management. BIOLOGY 2023; 12:1489. [PMID: 38132315 PMCID: PMC10740828 DOI: 10.3390/biology12121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Acanthamoeba Keratitis (AK) is a severe corneal infection caused by the Acanthamoeba species of protozoa, potentially leading to permanent vision loss. AK requires prompt diagnosis and treatment to mitigate vision impairment. Diagnosing AK is challenging due to overlapping symptoms with other corneal infections, and treatment is made complicated by the organism's dual forms and increasing virulence, and delayed diagnosis. In this review, new approaches in AK diagnostics and treatment within the last 5 years are discussed. The English-language literature on PubMed was reviewed using the search terms "Acanthamoeba keratitis" and "diagnosis" or "treatment" and focused on studies published between 2018 and 2023. Two hundred sixty-five publications were initially identified, of which eighty-seven met inclusion and exclusion criteria. This review highlights the findings of these studies. Notably, advances in PCR-based diagnostics may be clinically implemented in the near future, while antibody-based and machine-learning approaches hold promise for the future. Single-drug topical therapy (0.08% PHMB) may improve drug access and efficacy, while oral medication (i.e., miltefosine) may offer a treatment option for patients with recalcitrant disease.
Collapse
Affiliation(s)
- Omar Shareef
- School of Engineering and Applied Sciences, Harvard College, Cambridge, MA 02138, USA;
| | - Sana Shareef
- Department of Bioethics, Columbia University, New York, NY 10027, USA
| | - Hajirah N. Saeed
- Department of Ophthalmology, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Aggarwal S, Selvaraj S, Subramanian JN, Vijayalakshmi MA, Patankar S, Srivastava S. Polyclonal Antibody Generation against PvTRAg for the Development of a Diagnostic Assay for Plasmodium vivax. Diagnostics (Basel) 2023; 13:diagnostics13050835. [PMID: 36899977 PMCID: PMC10001162 DOI: 10.3390/diagnostics13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The World Health Organization (WHO) has set forth a global call for eradicating malaria, caused majorly by the protozoan parasites Plasmodium falciparum and Plasmodium vivax. The lack of diagnostic biomarkers for P. vivax, especially those that differentiate the parasite from P. falciparum, significantly hinders P. vivax elimination. Here, we show that P. vivax tryptophan-rich antigen (PvTRAg) can be a diagnostic biomarker for diagnosing P. vivax in malaria patients. We report that polyclonal antibodies against purified PvTRAg protein show interactions with purified PvTRAg and native PvTRAg using Western blots and indirect enzyme-linked immunosorbent assay (ELISA). We also developed an antibody-antigen-based qualitative assay using biolayer interferometry (BLI) to detect vivax infection using plasma samples from patients with different febrile diseases and healthy controls. The polyclonal anti-PvTRAg antibodies were used to capture free native PvTRAg from the patient plasma samples using BLI, providing a new expansion range to make the assay quick, accurate, sensitive, and high-throughput. The data presented in this report provides a proof of concept for PvTRAg, a new antigen, for developing a diagnostic assay for P. vivax identification and differentiation from the rest of the Plasmodium species and, at a later stage, translating the BLI assay into affordable, point-of-care formats to make it more accessible.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel
| | - Selvamano Selvaraj
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore 632014, India
| | | | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Correspondence: ; Tel.: +91-(22)-2576-7779
| |
Collapse
|
3
|
Detection of Acanthamoeba from Acanthamoeba Keratitis Mouse Model Using Acanthamoeba-Specific Antibodies. Microorganisms 2022; 10:microorganisms10091711. [PMID: 36144313 PMCID: PMC9500705 DOI: 10.3390/microorganisms10091711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Although the prevalence of Acanthamoeba keratitis (AK) is rare, its incidence in contact lens wearers has increased. Acanthamoeba infections can lead to the loss of vision if the diagnosis and treatment are delayed. In this study, we investigated the diagnostic potential of two antibodies raised against the adenylyl cyclase-associated protein (ACAP) and periplasmic binding protein (PBP) of A. castellanii in the AK mouse model. The specificity of ACAP and PBP antibodies to Acanthamoeba was confirmed by immunocytochemistry. AK mouse models were produced by corneal infections with A. castellanii trophozoites for 7 days and 21 days. Enzyme-linked immunosorbent assay results revealed that both ACAP and PBP antibodies successfully detected Acanthamoeba antigens in the tears and eyeball lysates of the AK mouse model. The detection levels of Acanthamoeba antigens were similar at both infection time points. Anti-Acanthamoeba IgG, IgA, and IgM antibodies were evaluated from the sera of the AK mouse model. Notably, IgM and IgA antibody responses were highest and lowest at both time points, respectively. Our findings revealed that both ACAP and PBP antibodies could detect Acanthamoeba antigens in the tears and eyeball lysates of the AK mouse model. These results provide important information for understanding Acanthamoeba infections and developing a new diagnostic tool for AK.
Collapse
|
4
|
Kim MJ, Quan FS, Kong HH, Kim JH, Moon EK. Specific Detection of Acanthamoeba species using Polyclonal Peptide Antibody Targeting the Periplasmic Binding Protein of A. castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:143-147. [PMID: 35500897 PMCID: PMC9058276 DOI: 10.3347/kjp.2022.60.2.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
Abstract
Acanthamoeba keratitis (AK) is a rare ocular disease, but it is a painful and sight-threatening infectious disease. Early diagnosis and adequate treatment are necessary to prevent serious complications. While AK is frequently diagnosis via several PCR assays or Acanthamoeba-specific antibodies, a more specific and effective diagnostic method is required. This study described the production of a polyclonal peptide antibody against the periplasmic binding protein (PBP) of A. castellanii and investigated its diagnostic potential. Western blot analysis showed that the PBP antibody specifically reacted with the cell lysates of A. castellanii. However, the PBP antibody did not interact with human corneal epithelial (HCE) cells and the other 3 major causative agents of keratitis. Immunocytochemistry (ICC) results revealed the specific detection of A. castellanii trophozoites and cysts by PBP antibodies when A. castellanii were co-cultured with HCE cells. PBP antibody specificity was further confirmed by co-culture of A. castellanii trophozoites with F. solani, S. aureus, and P. aeruginosa via ICC. The PBP antibody specifically reacted with the trophozoites and cysts of A. polyphaga, A. hatchetti, A. culbertsoni, A. royreba, and A. healyi, thus demonstrated its genus-specific nature. These results showed that the PBP polyclonal peptide antibody of A. castellanii could specifically detect several species of Acanthamoeba, contributing to the development of an effective antibody-based AK diagnostics.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| |
Collapse
|
5
|
Kim MJ, Chu KB, Lee HA, Quan FS, Kong HH, Moon EK. Detection of Acanthamoeba spp. using carboxylesterase antibody and its usage for diagnosing Acanthamoeba-keratitis. PLoS One 2022; 17:e0262223. [PMID: 34986189 PMCID: PMC8730387 DOI: 10.1371/journal.pone.0262223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Contact lens usage has contributed to increased incidence rates of Acanthamoeba keratitis (AK), a serious corneal infection that can lead to blindness. Since symptoms associated with AK closely resemble those incurred by bacterial or fungal keratitis, developing a diagnostic method enabling rapid detection with a high degree of Acanthamoeba-specificity would be beneficial. Here, we produced a polyclonal antibody targeting the carboxylesterase (CE) superfamily protein secreted by the pathogenic Acanthamoeba and evaluated its diagnostic potential. Western blot analysis revealed that the CE antibody specifically interacts with the cell lysates and conditioned media of pathogenic Acanthamoeba, which were not observed from the cell lysates and conditioned media of human corneal epithelial (HCE) cells, Fusarium solani, Staphylococcus aureus, and Pseudomonas aeruginosa. High titers of A. castellanii-specific antibody production were confirmed sera of immunized mice via ELISA, and these antibodies were capable of detecting A. castellanii from the cell lysates and their conditioned media. The specificity of the CE antibody was further confirmed on A. castellanii trophozoites and cysts co-cultured with HCE cells, F. solani, S. aureus, and P. aeruginosa using immunocytochemistry. Additionally, the CE antibody produced in this study successfully interacted with 7 different Acanthamoeba species. Our findings demonstrate that the polyclonal CE antibody specifically detects multiple species belong to the genus Acanthamoeba, thus highlighting its potential as AK diagnostic tool.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
6
|
Kim MJ, Lee HA, Quan FS, Kong HH, Moon EK. Characterization of a Peptide Antibody Specific to the Adenylyl Cyclase-Associated Protein of Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:7-14. [PMID: 35247949 PMCID: PMC8898646 DOI: 10.3347/kjp.2022.60.1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
Abstract
Acanthamoeba keratitis (AK) is a rare infectious disease and accurate diagnosis has remained arduous as clinical manifestations of AK were similar to keratitis of viral, bacterial, or fungal origins. In this study, we described the production of a polyclonal peptide antibody against the adenylyl cyclase-associated protein (ACAP) of A. castellanii, and evaluated its differential diagnostic potential. Enzyme-linked immunosorbent assay revealed high titers of A. castellanii-specific IgG and IgA antibodies being present in low dilutions of immunized rabbit serum. Western blot analysis revealed that the ACAP antibody specifically interacted with A. castellanii, while not interacting with human corneal epithelial (HCE) cells and other causes of keratitis such as Fusarium solani, Pseudomonas aeruginosa, and Staphylococcus aureus. Immunocytochemistry (ICC) results confirmed the specific detection of trophozoites and cysts of A. castellanii co-cultured with HCE cells. The ACAP antibody also specifically interacted with the trophozoites and cysts of 5 other Acanthamoeba species. These results indicate that the ACAP antibody of A. castellanii can specifically detect multiple AK-causing members belonging to the genus Acanthamoeba and may be useful for differentially diagnosing Acanthamoeba infections.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Korea.,Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Eun-Kyung Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
7
|
Wang YJ, Chen CH, Chen JW, Lin WC. Commensals Serve as Natural Barriers to Mammalian Cells during Acanthamoeba castellanii Invasion. Microbiol Spectr 2021; 9:e0051221. [PMID: 34935418 PMCID: PMC8693914 DOI: 10.1128/spectrum.00512-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Clinical Laboratory, Chest Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chun-Hsien Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Lee HA, Chu KB, Kim MJ, Quan FS, Kong HH, Moon EK. Chorismate mutase peptide antibody enables specific detection of Acanthamoeba. PLoS One 2021; 16:e0250342. [PMID: 33891646 PMCID: PMC8064552 DOI: 10.1371/journal.pone.0250342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Accurate and rapid diagnosis of Acanthamoeba keratitis (AK) is difficult. Although the diagnostic procedure for AK has improved, further development and effective diagnostic tool utilization for AK need to continue. Chorismate mutase is a key regulatory enzyme involved in the shikimate pathway, a metabolic pathway absent in mammals but central for amino acid biosynthesis in bacteria, fungi, algae, and plants. In this study, we describe the identification and production of a polyclonal peptide antibody targeting chorismate mutase secreted by A. castellanii, which could be used for AK diagnosis. Western blot was performed using the protein lysates and conditioned media of the human corneal epithelial (HCE) cells, non-pathogenic Acanthamoeba, pathogenic Acanthamoeba, clinical isolate of Acanthamoeba spp., and other causes of keratitis such as Fusarium solani, Pseudomonas aeruginosa, and Staphylococcus aureus. Polyclonal antibodies raised against A. castellanii chorismate mutase specifically interacted with lysates of Acanthamoeba origin and their culture media, while such interactions were not observed from other samples. Acanthamoeba-specificity of chorismate mutase was also confirmed using immunocytochemistry after co-culturing Acanthamoeba with HCE cells. Specific binding of the chorismate mutase antibody to Acanthamoeba was observed, which were absent in the case of HCE cells. These results indicate that the chorismate mutase antibody of Acanthamoeba may serve as a method for rapid and differential Acanthamoeba identification.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|