1
|
Lado P, Crispell GP, Chong ST, Kim MS, Esparza AN, Zielinski E, Iwami A, Williams KP, Eads JJ, Jimbo K, Mitzel DN, Cohnstaedt LW, Richardson JB, Kugelman JR, Stoops CA. Japanese Encephalitis Virus Surveillance in U.S. Army Installations in the Republic of Korea from 2021 to 2023. Pathogens 2024; 13:705. [PMID: 39204305 PMCID: PMC11357451 DOI: 10.3390/pathogens13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Japanese encephalitis is a disease caused by the Japanese encephalitis virus (JEV) and is a concern for U.S. military personnel stationed in the Republic of Korea (ROK). The recent literature reports a potential shift from GI to GV as the dominant genotype circulating in east Asia. In the ROK, GV has been reported in a few Culex spp., but not in the main JEV vector, Cx. tritaeniorhynchus. The goal of this surveillance was to shed light on the current knowledge of the epidemiology of JEV in the ROK by analyzing mosquito collection data from three consecutive years, 2021-2023, and molecularly detecting and genotyping JEV in all Culex spp. collected in several military locations across the ROK. In this study, we detected only JEV GI in Cx. tritaeniorhynchus in 2021 samples. In contrast, all 2022 and 2023 positive samples were GV and detected in Cx. bitaeniorhynchus, Cx. orientalis, and Cx. pipiens. Results support a shift in JEV genotype in the ROK and suggest that for GV, Culex spp. other than Cx. tritaeniorhynchus may be playing an important role.
Collapse
Affiliation(s)
- Paula Lado
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA; (P.L.); (D.N.M.); (L.W.C.)
| | - Gary P. Crispell
- Environmental Molecular Biology Laboratory, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (G.P.C.); (A.N.E.); (E.Z.); (A.I.); (K.P.W.)
| | - Sung Tae Chong
- Public Health, Environmental Health Section, Defense Health Agency Brian Allgood Army Community Hospital, Camp Humphreys 96271, Republic of Korea; (S.T.C.); (M.S.K.)
| | - Myong Sun Kim
- Public Health, Environmental Health Section, Defense Health Agency Brian Allgood Army Community Hospital, Camp Humphreys 96271, Republic of Korea; (S.T.C.); (M.S.K.)
| | - Ashley N. Esparza
- Environmental Molecular Biology Laboratory, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (G.P.C.); (A.N.E.); (E.Z.); (A.I.); (K.P.W.)
| | - Eric Zielinski
- Environmental Molecular Biology Laboratory, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (G.P.C.); (A.N.E.); (E.Z.); (A.I.); (K.P.W.)
| | - Akira Iwami
- Environmental Molecular Biology Laboratory, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (G.P.C.); (A.N.E.); (E.Z.); (A.I.); (K.P.W.)
| | - Kelly P. Williams
- Environmental Molecular Biology Laboratory, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (G.P.C.); (A.N.E.); (E.Z.); (A.I.); (K.P.W.)
| | - John J. Eads
- Entomology, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (J.J.E.); (K.J.)
| | - Kei Jimbo
- Entomology, U.S. Army Public Health Command-Pacific, Camp Zama, Zama City 252-0027, Kanagawa, Japan; (J.J.E.); (K.J.)
| | - Dana N. Mitzel
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA; (P.L.); (D.N.M.); (L.W.C.)
| | - Lee W. Cohnstaedt
- National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), P.O. Box 1807, Manhattan, KS 66505, USA; (P.L.); (D.N.M.); (L.W.C.)
| | - Joshua B. Richardson
- Center for Genome Science, USAMRIID, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (J.B.R.); (J.R.K.)
| | - Jeffrey R. Kugelman
- Center for Genome Science, USAMRIID, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; (J.B.R.); (J.R.K.)
| | - Craig A. Stoops
- Public Health, Environmental Health Section, Defense Health Agency Brian Allgood Army Community Hospital, Camp Humphreys 96271, Republic of Korea; (S.T.C.); (M.S.K.)
| |
Collapse
|
2
|
Hong H, Eom TH, Trinh TTT, Tuan BD, Park H, Yeo SJ. Identification of breeding habitats and kdr mutations in Anopheles spp. in South Korea. Malar J 2023; 22:381. [PMID: 38104158 PMCID: PMC10724954 DOI: 10.1186/s12936-023-04821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Malaria is still endemic in South Korea. However, limited information is available on the current Anopheles breeding sites and the occurrence of insecticide resistance-associated genetic mutations and their distribution needed to control the malaria vector efficiently. METHODS This study explored breeding sites of Anopheline adults in Gimpo-si, near the demilitarized zone (DMZ) in Gyeonggi-do province, South Korea, from 2022 to 2023. Genetic diversity was investigated based on the internal transcribed spacer (ITS2), cytochrome c oxidase subunit I (COI), and knockdown resistance (kdr) genes of Anopheles mosquitoes. A natural environment associated with the seasonal abundance of Anopheles larvae was characterized. RESULTS Two breeding sites of Anopheles larvae and adults were found at a stream margin or shallow freshwater near the forest in Wolgot-myeon in Gimpo-si without cattle shed within 1 km and in Naega-myeon in Ganghwa-gun with cow shed within 100 m in 2022 and 2023, respectively. Both sites were located between the newly cultivated lands and the forest. Besides, both breeding sites were in the valley at a slight elevation of 60-70 m from ground lands and maintained the shadow all day. Overall, the Wolgot-myeon breeding site showed various Anopheles spp. larvae, including Anopheles sinensis. Naega-myeon, an additional breeding site found in 2023, had Anopheles sineroides larvae, and approximately 59.7% (89/149) of An. sinensis adults inhabited within a 100-m distance. The total collection, including larvae and adults, revealed that An. sinensis, Anopheles pullus, Anopheles kleini, An. sineroides, Anopheles belenrae, and Anopheles lindesayi accounted for 44.2% (118/267), 0.7% (2/267), 0.7% (2/267), 22.1% (59/267), 1.9% (5/267), and 30.3% (81/267), respectively. Furthermore, various kdr mutant genotypes (F/F, C/C, L/F, L/C and F/C) in An. sinensis, and the first kdr allele mutant (L/F1014) in An. belenrae were identified in South Korea. CONCLUSIONS Two breeding sites of Anopheles larvae were studied in Wolgot-myeon and Naega-myeon. Various Anopheles spp. larvae were detected in both habitats, but overall, An. sinensis was the most prevalent adults in both study sites. The occurrence of kdr allele mutant of An. belenrae in South Korea was reported. Rigorous larvae monitoring of Anopheles spp., continuously updating information on Anopheles breeding sites, and understanding the environmental conditions of Anopheles habitats are required to develop an effective malaria control programme in South Korea.
Collapse
Affiliation(s)
- Hyelee Hong
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Tae-Hui Eom
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Tropical Medicine and Parasitology, Medical Research Center, Institute of Endemic Diseases, Seoul National University, Seoul, 03080, Republic of Korea
| | - Bao Duong Tuan
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-Daero, Iksan, 54538, Republic of Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, 460 Iksan-Daero, Iksan, 54538, Republic of Korea
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Tropical Medicine and Parasitology, Medical Research Center, Institute of Endemic Diseases, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Stoops CA, Kim MS, Mahabir S, Chong ST, Cinkovich SS, Carder JB. CDC Bottle Bioassays for Detection of Insecticide Resistance in Culex Pipiens, Aedes Albopictus, and Aedes Koreicus Collected on US Army Garrisons, Republic of Korea. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:208-211. [PMID: 37504379 DOI: 10.2987/23-7119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mosquito-borne pathogens are a threat to US troops stationed in the Republic of Korea (ROK). Insecticide resistance has been reported in mosquito vectors in the ROK, highlighting the need for a sustained ROK-wide resistance surveillance program. To address this need from April 2022 until October 2022, larvae and pupae of Aedes albopictus, Ae. koreicus, and Culex pipiens were collected from US Army Garrison (USAG) Daegu (Camps Carroll and Henry), USAG Yongsan-Casey (Camp Casey), and USAG Humphreys (Camp Humphreys) and screened for resistance to insecticides using the Centers for Disease Control and Prevention (CDC) bottle bioassay. No resistance to deltamethrin or chlorpyrifos was detected in Ae. albopictus populations, but one population showed possible resistance to permethrin. Aedes koreicus populations were found to be resistant to etofenprox and permethrin with possible resistance to deltamethrin but were susceptible to chlorpyrifos. Culex pipiens populations were found to be resistant to chlorpyrifos, permethrin, and deltamethrin. Screening using CDC bottle bioassays will continue, and efforts will be made to determine the operational impact of the assay results on military installation mosquito control programs.
Collapse
|
4
|
Harbach RE, Wilkerson RC. The insupportable validity of mosquito subspecies (Diptera: Culicidae) and their exclusion from culicid classification. Zootaxa 2023; 5303:1-184. [PMID: 37518540 DOI: 10.11646/zootaxa.5303.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Beginning about 80 years ago, the recognition of morphological varieties of mosquitoes was gradually replaced by the recognition of subspecies. As an examination of revisionary and detailed taxonomic studies of mosquitoes clearly shows, subspecies are untenable concepts which have been synonymized with nominotypical forms or recognized as distinct species. Thus, from our perspective, subspecies is not a functional or practical taxonomic rank. Consequently, in this study we critically assessed the taxonomic status of the 120 nominal taxa distinguished as subspecies before now to determine whether they should be recognized as separate species or synonymous names. As a result, 96 subspecies are formally elevated to specific rank, 22 are relegated to synonymy with nominotypical forms, one is considered a nomen dubium, one a species inquirenda and the names of four nominal species regarded as synonyms are revalidated. The subspecies and their new status are listed in a conspectus. The revalidated species include Anopheles argentinus (Brèthes, 1912), from synonymy with An. pseudopunctipennis Theobald, 1901c; An. peruvianus Tamayo, 1907, from synonymy with An. pseudopunctipennis as nomen dubium; Culex major Edwards, 1935, from synonymy with Cx. annulioris consimilis Newstead, 1907; and Trichoprosopon trichorryes (Dyar & Knab, 1907), from synonymy with Tr. compressum Lutz, 1905. Additionally, the type locality of Anopheles sergentii Theobald, 1907 is restricted to El Outaya, Biskra Province, Algeria. A complete list of species to be retained, added to or removed from the Encyclopedia of Life, with a few corrections, is provided.
Collapse
Affiliation(s)
- Ralph E Harbach
- Department of Science; Natural History Museum; Cromwell Road; London SW7 5BD; UK.
| | - Richard C Wilkerson
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; Washington DC 20013; USA; Walter Reed Biosystematics Unit; Museum Support Center; Smithsonian Institution; Suitland; MD 20746; USA; One Health Branch; Walter Reed Army Institute of Research; Silver Spring; MD 20910; USA.
| |
Collapse
|
5
|
Baril C, Pilling BG, Mikkelsen MJ, Sparrow JM, Duncan CAM, Koloski CW, LaZerte SE, Cassone BJ. The influence of weather on the population dynamics of common mosquito vector species in the Canadian Prairies. Parasit Vectors 2023; 16:153. [PMID: 37118839 PMCID: PMC10148408 DOI: 10.1186/s13071-023-05760-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/29/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Mosquito seasonal activity is largely driven by weather conditions, most notably temperature, precipitation, and relative humidity. The extent by which these weather variables influence activity is intertwined with the animal's biology and may differ by species. For mosquito vectors, changes in weather can also alter host-pathogen interactions thereby increasing or decreasing the burden of disease. METHODS In this study, we performed weekly mosquito surveillance throughout the active season over a 2-year period in Manitoba, Canada. We then used Generalized Linear Mixed Models (GLMMs) to explore the relationships between weather variables over the preceding 2 weeks and mosquito trap counts for four of the most prevalent vector species in this region: Oc. dorsalis, Ae. vexans, Cx. tarsalis, and Cq. perturbans. RESULTS More than 265,000 mosquitoes were collected from 17 sampling sites throughout Manitoba in 2020 and 2021, with Ae. vexans the most commonly collected species followed by Cx. tarsalis. Aedes vexans favored high humidity, intermediate degree days, and low precipitation. Coquillettidia perturbans and Oc. dorsalis activity increased with high humidity and high rainfall, respectively. Culex tarsalis favored high degree days, with the relationship between number of mosquitoes captured and precipitation showing contrasting patterns between years. Minimum trapping temperature only impacted Ae. vexans and Cq. perturbans trap counts. CONCLUSIONS The activity of all four mosquito vectors was affected by weather conditions recorded in the 2 weeks prior to trapping, with each species favoring different conditions. Although some research has been done to explore the relationships between temperature/precipitation and Cx. tarsalis in the Canadian Prairies, to our knowledge this is the first study to investigate other commonly found vector species in this region. Overall, this study highlights how varying weather conditions can impact mosquito activity and in turn species-specific vector potential.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Ben G Pilling
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Milah J Mikkelsen
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Jessica M Sparrow
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Carlyn A M Duncan
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Cody W Koloski
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
| | - Stefanie E LaZerte
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada
- Steffi LaZerte R Programming and Biological Consulting, Brandon, MB, Canada
| | - Bryan J Cassone
- Department of Biology, Brandon University, Brandon, MB, R7A 6A9, Canada.
| |
Collapse
|
6
|
Feifei L, Hairong L, Linsheng Y, Li W, Lijuan G, Gemei Z, Lan Z. The spatial-temporal pattern of Japanese encephalitis and its influencing factors in Guangxi, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105433. [PMID: 37037290 DOI: 10.1016/j.meegid.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Japanese encephalitis (JE) is a major global public health threat. Using Japanese encephalitis incidence data from 2004 to 2010 in Guangxi Province, China, this study comprehensively explored the driving forces and the interactive effects between environmental and social factors of Japanese encephalitis using the Geo-detector method. The results indicated that the incidence of Japanese encephalitis showed a fluctuating downward trend from 2004 to 2010. The onset of JE was seasonal, mainly concentrated in June-July, and highly aggregated in northwestern Guangxi. Among the factors associated with Japanese encephalitis, days with temperatures >30 °C, accumulated temperatures >25 °C, slope, the normalized difference vegetation index, the gross domestic product of tertiary industries, the gross domestic product of primary industries and the number of pigs slaughtered showed higher contributions to Japanese encephalitis incidence. An enhanced interactive effect was found between environmental and social factors, and the interaction between days with humidity levels >80% and the gross domestic product of tertiary industries had the greatest combined effect on JE. These findings enhanced the understanding of the combined effect of social and environmental factors on the incidence of Japanese encephalitis and could help improve Japanese encephalitis transmission control and prevention strategies.
Collapse
Affiliation(s)
- Li Feifei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hairong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Linsheng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wang Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gu Lijuan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhong Gemei
- Guangxi Center for Disease Prevention and Control, Guangxi 530000, China
| | - Zhang Lan
- National Institute of Environmental Health, China CDC, Beijing 100021, China
| |
Collapse
|
7
|
Lim AY, Cheong HK, Chung Y, Sim K, Kim JH. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Parasit Vectors 2021; 14:559. [PMID: 34715902 PMCID: PMC8555308 DOI: 10.1186/s13071-021-05071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite concerns regarding increasingly frequent and intense heat waves due to global warming, there is still a lack of information on the effects of extremely high temperatures on the adult abundance of mosquito species that are known to transmit vector-borne diseases. This study aimed to evaluate the effects of extremely high temperatures on the abundance of mosquitoes by analyzing time series data for temperature and mosquito abundance in Incheon Metropolitan City (IMC), Republic of Korea, for the period from 2015 to 2020. METHODS A generalized linear model with Poisson distribution and overdispersion was used to model the nonlinear association between temperature and mosquito count for the whole study area and for its constituent urban and rural regions. The association parameters were pooled using multivariate meta-regression. The temperature-mosquito abundance curve was estimated from the pooled estimates, and the ambient temperature at which mosquito populations reached maximum abundance (TMA) was estimated using a Monte Carlo simulation method. To quantify the effect of extremely high temperatures on mosquito abundance, we estimated the mosquito abundance ratio (AR) at the 99th temperature percentile (AR99th) against the TMA. RESULTS Culex pipiens was the most common mosquito species (51.7%) in the urban region of the IMC, while mosquitoes of the genus Aedes (Ochlerotatus) were the most common in the rural region (47.8%). Mosquito abundance reached a maximum at 23.5 °C for Cx. pipiens and 26.4 °C for Aedes vexans. Exposure to extremely high temperatures reduced the abundance of Cx. pipiens mosquitoes {AR99th 0.34 [95% confidence interval (CI) 0.21-0.54]} to a greater extent than that of Anopheles spp. [AR99th 0.64 (95% CI 0.40-1.03)]. When stratified by region, Ae. vexans and Ochlerotatus koreicus mosquitoes showed higher TMA and a smaller reduction in abundance at extreme heat in urban Incheon than in Ganghwa, suggesting that urban mosquitoes can thrive at extremely high temperatures as they adapt to urban thermal environments. CONCLUSIONS We confirmed that the temperature-related abundance of the adult mosquitoes was species and location specific. Tailoring measures for mosquito prevention and control according to mosquito species and anticipated extreme temperature conditions would help to improve the effectiveness of mosquito-borne disease control programs.
Collapse
Affiliation(s)
- Ah-Young Lim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Kwan Cheong
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kisung Sim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Hun Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
National Monitoring of Mosquito Populations and Molecular Analysis of Flavivirus in the Republic of Korea in 2020. Microorganisms 2021; 9:microorganisms9102085. [PMID: 34683405 PMCID: PMC8538701 DOI: 10.3390/microorganisms9102085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
The Korea Disease Control and Prevention Agency has established centers at 16 locations to screen vector populations and pathogens. The aims of this study were to determine the relative spatiotemporal distributions of mosquitoes that are flavivirus vectors, and to correlate them with instances of flaviviral disease in the Republic of Korea (ROK). We collected 67,203 mosquitoes in traps at 36 collection sites in 30 urban regions and migratory bird habitats in 2020. The trap index was 36.6, and the predominant mosquito species were the Culex pipiens complex, Armigeres subalbatus, Aedes albopictus, Aedes vexans, and Culex tritaeniorhynchus. The mosquitoes were pooled into 4953 pools to monitor flavivirus infection. We determined that the minimum infection rate of flavivirus was 0.01%. Japanese encephalitis virus (JEV) was detected in only seven pools of Culex orientalis from Sangju, and we isolated JVE from two pools. All detected JEV was found to be genotype V by phylogenetic analysis. To the best of our knowledge, this is the first study to isolate genotype V JVE from Culex orientalis in the ROK. Subsequent geographical and ecological studies on mosquitoes will help improve our understanding of the relative risk of flavivirus infection. Future studies should analyze mosquito species distribution and improve flavivirus monitoring and long-term surveillance.
Collapse
|