1
|
Broadfoot CK, Hoffmeister JD, Lechner SA, Krasko MN, Lambert E, Russell JA, Szot JC, Glass TJ, Connor NP, Kelm-Nelson CA, Ciucci MR. Tongue and laryngeal exercises improve tongue strength and vocal function outcomes in a Pink1-/- rat model of early Parkinson disease. Behav Brain Res 2024; 460:114754. [PMID: 37981125 PMCID: PMC10872343 DOI: 10.1016/j.bbr.2023.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Parkinson disease (PD) causes voice and swallow dysfunction even in early stages of the disease. Treatment of this dysfunction is limited, and the neuropathology underlying this dysfunction is poorly defined. Targeted exercise provides the greatest benefit for offsetting voice and swallow dysfunction, and previous data suggest the hypoglossal nucleus and noradrenergic-locus coeruleus (LC) may be involved in its early pathology. To investigate relationships between targeted exercise and neuropathology of voice and swallow dysfunction, we implemented a combined exercise paradigm that included tongue force and vocalization exercises early in the Pink1-/- rat model. We tested the hypotheses that (1) tongue and vocal exercise improves tongue force and timing behaviors and vocalization outcomes, and (2) exercise increases optical density of serotonin (5-HT) in the hypoglossal nucleus, and tyrosine hydroxylase immunoreactive (Th-ir) cell counts in the LC. At two months of age Pink1-/- rats were randomized to exercise or non-exercise treatment. Age-matched wildtype (WT) control rats were assigned to non-exercise treatment. Tongue force and timing behaviors and ultrasonic vocalizations were measured at baseline (two months) and final (four months) timepoints. Optical density of 5-HT in the hypoglossal nucleus and TH-ir cell counts in the LC were obtained. Pink1-/- rats produced greater tongue forces, faster tongue contraction, and higher-intensity vocalization following exercise. There were no differences in LC TH-ir. The non-exercised Pink1-/- group had reduced density of 5-HT in the hypoglossal nucleus compared to the WT control group. The changes to tongue function and vocalization after targeted exercise suggests exercise intervention may be beneficial in early PD.
Collapse
Affiliation(s)
- Courtney K Broadfoot
- University of South Alabama, Department of Speech Pathology & Audiology, 36688, USA.
| | | | - Sarah A Lechner
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Maryann N Krasko
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA
| | - Emily Lambert
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - John A Russell
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - John C Szot
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Tiffany J Glass
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Nadine P Connor
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA; University of Wisconsin-Madison, Neuroscience Training Program, 53706, USA
| | - Cynthia A Kelm-Nelson
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Michelle R Ciucci
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA; University of Wisconsin-Madison, Neuroscience Training Program, 53706, USA
| |
Collapse
|
2
|
Barnett DG, Lechner SA, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Oxidative Metabolism and Synaptic Signaling Dysregulation in the Female Pink1-/- Rat. Laryngoscope 2023; 133:3412-3421. [PMID: 37293988 PMCID: PMC10709531 DOI: 10.1002/lary.30768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES AND HYPOTHESIS Vocal dysfunction, including hypophonia, in Parkinson disease (PD) manifests in the prodromal period and significantly impacts an individual's quality of life. Data from human studies suggest that pathology leading to vocal deficits may be structurally related to the larynx and its function. The Pink1-/- rat is a translational model used to study pathogenesis in the context of early-stage mitochondrial dysfunction. The primary objective of this work was to identify differentially expressed genes in the thyroarytenoid muscle and examine the dysregulated biological pathways in the female rat. METHODS RNA sequencing was used to determine thyroarytenoid (TA) muscle gene expression in adult female Pink1-/- rats compared with controls. A bioinformatic approach and the ENRICHR gene analysis tool were used to compare the sequencing dataset with biological pathways and processes, disease relationships, and drug-repurposing compounds. Weighted Gene Co-expression Network Analysis was used to construct biological network modules. The data were compared with a previously published dataset in male rats. RESULTS Significant upregulated pathways in female Pink1-/- rats included fatty acid oxidation and muscle contraction, synaptic transmission, and neuromuscular processes. Downregulated pathways included anterograde transsynaptic signaling, chemical synaptic transmission, and ion release. Several drug treatment options including cetuximab, fluoxetine, and resveratrol are hypothesized to reverse observed genetic dysregulation. CONCLUSIONS Data presented here are useful for identifying biological pathways that may underlie the mechanisms of peripheral dysfunction including neuromuscular synaptic transmission to the TA muscle. These experimental biomarkers have the potential to be targeted as sites for improving the treatment for hypophonia in early-stage PD. LEVEL OF EVIDENCE NA Laryngoscope, 133:3412-3421, 2023.
Collapse
Affiliation(s)
- David G.S. Barnett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
3
|
Krasko MN, Szot J, Lungova K, Rowe LM, Leverson G, Kelm-Nelson CA, Ciucci MR. Pink1-/- Rats Demonstrate Swallowing and Gastrointestinal Dysfunction in a Model of Prodromal Parkinson Disease. Dysphagia 2023; 38:1382-1397. [PMID: 36949296 PMCID: PMC10514238 DOI: 10.1007/s00455-023-10567-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Early motor and non-motor signs of Parkinson disease (PD) include dysphagia, gastrointestinal dysmotility, and constipation. However, because these often manifest prior to formal diagnosis, the study of PD-related swallow and GI dysfunction in early stages is difficult. To overcome this limitation, we used the Pink1-/- rat, a well-established early-onset genetic rat model of PD to assay swallowing and GI motility deficits. Thirty male rats were tested at 4 months (Pink1-/- = 15, wildtype (WT) control = 15) and 6 months (Pink1-/- = 7, WT = 6) of age; analogous to early-stage PD in humans. Videofluoroscopy of rats ingesting a peanut-butter-barium mixture was used to measure mastication rate and oropharyngeal and pharyngoesophageal bolus speeds. Abnormal swallowing behaviors were also quantified. A second experiment tracked barium contents through the stomach, small intestine, caecum, and colon at hours 0-6 post-barium gavage. Number and weight of fecal emissions over 24 h were also collected. Compared to WTs, Pink1-/- rats showed slower mastication rates, slower pharyngoesophageal bolus speeds, and more abnormal swallowing behaviors. Pink1-/- rats demonstrated significantly delayed motility through the caecum and colon. Pink1-/- rats also had significantly lower fecal pellet count and higher fecal pellet weight after 24 h at 6 months of age. Results demonstrate that swallowing dysfunction occurs early in Pink1-/- rats. Delayed transit to the colon and constipation-like signs are also evident in this model. The presence of these early swallowing and GI deficits in Pink1-/- rats are analogous to those observed in human PD.
Collapse
Affiliation(s)
- Maryann N Krasko
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA.
| | - John Szot
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Karolina Lungova
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Linda M Rowe
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA
| | - Glen Leverson
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Fu L, Zou Y, Yu B, Hong D, Guan T, Hu J, Xu Y, Wu Y, Kou J, Lv Y. Background and roles: myosin in autoimmune diseases. Front Cell Dev Biol 2023; 11:1220672. [PMID: 37691828 PMCID: PMC10484797 DOI: 10.3389/fcell.2023.1220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
The myosin superfamily is a group of molecular motors. Autoimmune diseases are characterized by dysregulation or deficiency of the immune tolerance mechanism, resulting in an immune response to the human body itself. The link between myosin and autoimmune diseases is much more complex than scientists had hoped. Myosin itself immunization can induce experimental autoimmune diseases of animals, and myosins were abnormally expressed in a number of autoimmune diseases. Additionally, myosin takes part in the pathological process of multiple sclerosis, Alzheimer's disease, Parkinson's disease, autoimmune myocarditis, myositis, hemopathy, inclusion body diseases, etc. However, research on myosin and its involvement in the occurrence and development of diseases is still in its infancy, and the underlying pathological mechanisms are not well understood. We can reasonably predict that myosin might play a role in new treatments of autoimmune diseases.
Collapse
Affiliation(s)
- Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Krasko MN, Rudisch DM, Burdick RJ, Schaen-Heacock NE, Broadfoot CK, Nisbet AF, Rogus-Pulia N, Ciucci MR. Dysphagia in Parkinson Disease: Part II-Current Treatment Options and Insights from Animal Research. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023; 11:188-198. [PMID: 39301152 PMCID: PMC11411792 DOI: 10.1007/s40141-023-00393-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 09/22/2024]
Abstract
Purpose of Review Dysphagia is highly prevalent in Parkinson disease (PD) but is not typically identified nor treated until later in the disease process. This review summarizes current pharmacological, surgical, and behavioral treatments for PD-associated dysphagia and contributions from translational animal research. Recent Findings Swallowing is a complex physiologic process controlled by multiple brain regions and neurotransmitter systems. As such, interventions that target nigrostriatal dopamine dysfunction have limited or detrimental effects on swallowing outcomes. Behavioral interventions can help target PD-associated dysphagia in mid-to-late stages. Animal research is necessary to refine treatments and useful in studying prodromal dysphagia. Summary Dysphagia is an early, common, and debilitating sign of PD. Current pharmacological and surgical interventions are not effective in ameliorating swallowing dysfunction; behavioral intervention remains the most effective approach for dysphagia treatment. Animal research has advanced our understanding of mechanisms underlying PD and PD-associated dysphagia, and continues to show translational promise for the study of dysphagia treatment options.
Collapse
Affiliation(s)
- Maryann N Krasko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Denis Michael Rudisch
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Ryan J Burdick
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Nicole E Schaen-Heacock
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Courtney K Broadfoot
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Alex F Nisbet
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Nicole Rogus-Pulia
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
6
|
Zhang C, Chen S, Li X, Xu Q, Lin Y, Lin F, Yuan M, Zi Y, Cai J. Progress in Parkinson's disease animal models of genetic defects: Characteristics and application. Biomed Pharmacother 2022; 155:113768. [DOI: 10.1016/j.biopha.2022.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
|
7
|
Bono D, Belyk M, Longo MR, Dick F. Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates. Neurosci Biobehav Rev 2022; 139:104730. [PMID: 35691470 DOI: 10.1016/j.neubiorev.2022.104730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The English idiom "on the tip of my tongue" commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation.
Collapse
Affiliation(s)
- Davide Bono
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK.
| | - Michel Belyk
- Department of Speech, Hearing, and Phonetic Sciences, UCL Division of Psychology and Language Sciences, 2 Wakefield Street, London WC1N 1PJ, UK
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK
| | - Frederic Dick
- Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London WC1H0AP, UK; Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London WC1H0AP, UK; Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London WC1E7HX, UK.
| |
Collapse
|
8
|
Assays of Tongue Force, Timing, and Dynamics in Rat and Mouse Models. Brain Res Bull 2022; 185:49-55. [PMID: 35469932 PMCID: PMC10187612 DOI: 10.1016/j.brainresbull.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022]
Abstract
Communication and swallowing are highly complex sensorimotor events that are tightly linked to respiration and vital to health and well-being. The tongue is a complex organ, often described as a muscular hydrostat, that is crucial for maintaining airway patency, preparing and safely transporting food/liquid, and rapidly changing position and shape for speech. As with any complex behavior, tongue function can be compromised with aging, diseases/conditions, trauma, or as a pharmacologic side effect. As such, modeling lingual function and dysfunction for basic and translational research is paramount; understanding how the nervous system controls tongue function for complex behavior is foundational to this work. Non-invasive access to tongue tissues and kinematics during awake behavior has been historically challenging, creating a critical need to measure tongue function in model systems. Germane to this field of study are the instruments and assays of licking/lapping and drinking, including tongue force and timing measures, many of which were designed or modified by Dr. Stephen C. Fowler. The focus of this paper is to review some of the important contributions of measuring tongue behaviors in awake rats and mice and how these have been modified by other researchers to advance translational science.
Collapse
|
9
|
Lechner SA, Kletzien H, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Muscle Gene Expression in a Rat Model of Early-Onset Parkinson's Disease. Laryngoscope 2021; 131:E2874-E2879. [PMID: 34057223 PMCID: PMC8595495 DOI: 10.1002/lary.29661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES/HYPOTHESIS Voice disorders in Parkinson's disease (PD) are early-onset, manifest in the preclinical stages of the disease, and negatively impact quality of life. The complete loss of function in the PTEN-induced kinase 1 gene (Pink1) causes a genetic form of early-onset, autosomal recessive PD. Modeled after the human inherited mutation, the Pink1-/- rat demonstrates significant cranial sensorimotor dysfunction including declines in ultrasonic vocalizations. However, the underlying genetics of the vocal fold thyroarytenoid (TA) muscle that may contribute to vocal deficits has not been studied. The aim of this study was to identify differentially expressed genes in the TA muscle of 8-month-old male Pink1-/- rats compared to wildtype controls. STUDY DESIGN Animal experiment with control. METHODS High throughput RNA sequencing was used to examine TA muscle gene expression in adult male Pink1-/- rats and wildtype controls. Weighted Gene Co-expression Network Analysis was used to construct co-expression modules to identify biological networks, including where Pink1 was a central node. The ENRICHR tool was used to compare this gene set to existing human gene databases. RESULTS We identified 134 annotated differentially expressed genes (P < .05 cutoff) and observed enrichment in the following biological pathways: Parkinson's disease (Casp7, Pink1); Parkin-Ubiquitin proteasome degradation (Psmd12, Psmd7); MAPK signaling (Casp7, Ppm1b, Ppp3r1); and inflammatory TNF-α, Nf-κB Signaling (Casp7, Psmd12, Psmd7, Cdc34, Bcl7a, Peg3). CONCLUSIONS Genes and pathways identified here may be useful for evaluating the specific mechanisms of peripheral dysfunction including within the laryngeal muscle and have potential to be used as experimental biomarkers for treatment development. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2874-E2879, 2021.
Collapse
Affiliation(s)
- Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
10
|
Gulcan HO. Selected natural and synthetic agents effective against Parkinson's disease with diverse mechanisms. Curr Top Med Chem 2021; 22:199-208. [PMID: 34844541 DOI: 10.2174/1568026621666211129141316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
Similar to other neurodegenerative diseases, Parkinson's disease (PD) has been extensively investigated with respect to its neuropathological background and possible treatment options. Since the symptomatic outcomes are generally related to dopamine deficiency, the current treatment strategies towards PD mainly employ dopaminergic agonists as well as the compounds acting on dopamine metabolism. These drugs do not provide disease modifying properties; therefore alternative drug discovery studies focus on targets involved in the progressive neurodegenerative character of PD. This study has aimed to present the pathophysiology of PD concomitant to the representation of drugs and promising molecules displaying activity against the validated and non-validated targets of PD.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, 99520, T.R. North Cyprus, via Mersin 10. Turkey
| |
Collapse
|