1
|
Sanchez-Mazas A, Nunes JM. The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol 2024; 37:101559. [PMID: 39098805 DOI: 10.1016/j.beha.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
A comprehensive knowledge of human leukocyte antigen (HLA) molecular variation worldwide is essential in human population genetics research and disease association studies and is also indispensable for clinical applications such as allogeneic hematopoietic cell transplantation, where ensuring HLA compatibility between donors and recipients is paramount. Enormous progress has been made in this field thanks to several decades of HLA population studies allowing the development of helpful databases and bioinformatics tools. However, it is still difficult to appraise the global HLA population diversity in a synthetic way. We thus introduce here a novel approach, based on approximately 2000 data sets, to assess this complexity by providing a fundamental synopsis of the most frequent HLA alleles observed in different regions of the world. This new knowledge will be useful not only as a fundamental reference for basic research, but also as an efficient guide for clinicians working in the field of transplantation.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| |
Collapse
|
2
|
Shiina T, Kulski JK. HLA Genetics for the Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:237-258. [PMID: 38467984 DOI: 10.1007/978-981-99-9781-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.
Collapse
Affiliation(s)
| | - Jerzy K Kulski
- Tokai University School of Medicine, Isehara, Japan
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
3
|
Valenzuela-Ponce H, Carbajal C, Soto-Nava M, Tapia-Trejo D, García-Morales C, Murillo W, Lorenzana I, Reyes-Terán G, Ávila-Ríos S. Honduras HIV cohort: HLA class I and CCR5-Δ32 profiles and their associations with HIV disease outcome. Microbiol Spectr 2023; 11:e0161323. [PMID: 37962394 PMCID: PMC10714756 DOI: 10.1128/spectrum.01613-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE We identify both canonical and novel human leukocyte antigen (HLA)-HIV associations, providing a first step toward improved understanding of HIV immune control among the understudied Honduras Mestizo population. Our results are relevant to understanding the protective or detrimental effects of HLA subtypes in Latin America because their unique HLA diversity poses challenges for designing vaccines against HIV and interpreting results from such vaccine trials. Likewise, the description of the HLA profile in an understudied population that shows a unique HLA immunogenetic background is not only relevant for HIV immunology but also relevant in population genetics, molecular anthropology, susceptibility to other infections, autoimmune diseases, and allograft transplantation.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Candy Carbajal
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Maribel Soto-Nava
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Tapia-Trejo
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Claudia García-Morales
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Wendy Murillo
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretar ´ıa de Salud, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
4
|
Butler-Laporte G, Farjoun J, Nakanishi T, Lu T, Abner E, Chen Y, Hultström M, Metspalu A, Milani L, Mägi R, Nelis M, Hudjashov G, Yoshiji S, Ilboudo Y, Liang KYH, Su CY, Willet JDS, Esko T, Zhou S, Forgetta V, Taliun D, Richards JB. HLA allele-calling using multi-ancestry whole-exome sequencing from the UK Biobank identifies 129 novel associations in 11 autoimmune diseases. Commun Biol 2023; 6:1113. [PMID: 37923823 PMCID: PMC10624861 DOI: 10.1038/s42003-023-05496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with many immune-mediated and infection-related diseases. Due to its highly polymorphic nature and complex linkage disequilibrium patterns, traditional genetic association studies of single nucleotide polymorphisms do not perform well in this region. Instead, the field has adopted the assessment of the association of HLA alleles (i.e., entire HLA gene haplotypes) with disease. Often based on genotyping arrays, these association studies impute HLA alleles, decreasing accuracy and thus statistical power for rare alleles and in non-European ancestries. Here, we use whole-exome sequencing (WES) from 454,824 UK Biobank (UKB) participants to directly call HLA alleles using the HLA-HD algorithm. We show this method is more accurate than imputing HLA alleles and harness the improved statistical power to identify 360 associations for 11 auto-immune phenotypes (at least 129 likely novel), leading to better insights into the specific coding polymorphisms that underlie these diseases. We show that HLA alleles with synonymous variants, often overlooked in HLA studies, can significantly influence these phenotypes. Lastly, we show that HLA sequencing may improve polygenic risk scores accuracy across ancestries. These findings allow better characterization of the role of the HLA region in human disease.
Collapse
Affiliation(s)
- Guillaume Butler-Laporte
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada.
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Joseph Farjoun
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Tomoko Nakanishi
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tianyuan Lu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Yiheng Chen
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Michael Hultström
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Nelis
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Georgi Hudjashov
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Satoshi Yoshiji
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yann Ilboudo
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Kevin Y H Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Chen-Yang Su
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Julian D S Willet
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
| | - Daniel Taliun
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - J Brent Richards
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, Canada
- Department of Twin Research, King's College London, London, UK
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
5
|
Solloch UV, Giani AS, Pattillo Garnham MI, Sauter J, Bernas SN, Lange V, Barriga F, Fernández-Viña MA, Schmidt AH. HLA allele and haplotype frequencies of registered stem cell donors in Chile. Front Immunol 2023; 14:1175135. [PMID: 37313414 PMCID: PMC10258311 DOI: 10.3389/fimmu.2023.1175135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Patients in need of hematopoietic stem cell transplantation often rely on unrelated stem cell donors matched in certain human leukocyte antigen (HLA) genes. Donor search is complicated by the extensive allelic variability of the HLA system. Therefore, large registries of potential donors are maintained in many countries worldwide. Population-specific HLA characteristics determine the registry benefits for patients and also the need for further regional donor recruitment. In this work, we analyzed HLA allele and haplotype frequencies of donors of DKMS Chile, the first Chilean donor registry, with self-assessed "non-Indigenous" (n=92,788) and "Mapuche" (n=1,993) ancestry. We identified HLA alleles that were distinctly more abundant in the Chilean subpopulations than in worldwide reference populations, four of them particularly characteristic for the Mapuche subpopulation, namely B*39:09g, B*35:09, DRB1*04:07g, and DRB1*16:02g. Both population subsamples carried haplotypes of both Native American and European origin at high frequencies, reflecting Chile's complex history of admixture and immigration. Matching probability analysis revealed limited benefits for Chilean patients (both non-Indigenous and Mapuche) from donor registries of non-Chilean donors, thus indicating a need for ongoing significant donor recruitment efforts in Chile.
Collapse
|
6
|
Schor D, Porto LC, Roma EH, Castro-Alves J, Villela AP, Araújo AQC, Glória Bonecini-Almeida M. Putative role of HLA polymorphism among a Brazilian HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) population. Sci Rep 2023; 13:7659. [PMID: 37169817 PMCID: PMC10173239 DOI: 10.1038/s41598-023-34757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Around ten million people are infected with HTLV-1 worldwide, and 1-4% develop HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), characterized by an important degeneration of the spinal cord, which can lead to death. Distinct HLA alleles have been associated with either HAM/TSP susceptibility or protection. However, these HLA alleles set may change according to the population studied. Brazil is the second country in the number of HTLV-1-infected people and there are few reports addressing the HLA influence on HTLV-1 infection as well as on disease outcome. The objective of this study was to evaluate the influence of HLA alleles as a risk factor for HAM/TSP and the proviral load (PVL) levels, clinical progression, and death outcomes in an admixed Brazilian population. The HLA-A, -B, -C, and -DRB1 were genotyped in 375 unrelated HTLV-1-infected individuals divided into asymptomatic carriers (AC) (n = 165) and HAM/TSP (n = 210) in a longitudinal cohort from 8 to 22 years of follow-up. Because locus B deviated from Hardy-Weinberg Equilibrium for the study groups, the results represented for HLA-B alleles were inconclusive. The alleles HLA-A*68 and -C*07 were related to HAM/TSP risk in multivariate analysis. The alleles HLA-A*33, and -A*36 were associated with protection against disease progression in HAM/TSP patients, while -C*12, -C*14, and -DRB1*08 were associated with increased risk of death. In the AC group, the presence of, -C*06 and -DRB1*15 alleles influenced an increased PVL, in an adjusted linear regression model, while -A*30, -A*34, -C*06, -C*17 and -DRB1*09 alleles were associated with increased PVL in HAM/TSP group compared to HAM/TSP individuals not carrying these alleles. All these alleles were also related to increased PVL associated with clinical progression outcome. Increased PVL associated with the death outcome was linked to the presence of HLA-A*30. PVL has been associated with HLA, and several alleles were related in AC and HAM/TSP patients with or without interacting with clinical progression outcomes. Understanding the prognostic value of HLA in HAM/TSP pathogenesis can provide important biomarkers tools to improve clinical management and contribute to the discovery of new therapeutic interventions.
Collapse
Affiliation(s)
- Doris Schor
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Luís Cristóvão Porto
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20950-000, Brazil
| | - Eric Henrique Roma
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Julio Castro-Alves
- Plataforma de Pesquisa Clínica, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Anna Paula Villela
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20950-000, Brazil
| | - Abelardo Q C Araújo
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Maria Glória Bonecini-Almeida
- Laboratório de Imunologia e Imunogenética em Doenças Infecciosas, Instituto Nacional de Infectologia Evandro Chagas-INI/FIOCRUZ, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
7
|
Arrieta-Bolaños E, Hernández-Zaragoza DI, Barquera R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 2023; 14:866407. [PMID: 37035735 PMCID: PMC10076764 DOI: 10.3389/fgene.2023.866407] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
HLA frequencies show widespread variation across human populations. Demographic factors as well as selection are thought to have shaped HLA variation across continents. In this study, a worldwide comparison of HLA class I and class II diversity was carried out. Multidimensional scaling techniques were applied to 50 HLA-A and HLA-B (class I) as well as 13 HLA-DRB1 (class II) first-field frequencies in 200 populations from all continents. Our results confirm a strong effect of geography on the distribution of HLA class I allele groups, with principal coordinates analysis closely resembling geographical location of populations, especially those of Africa-Eurasia. Conversely, class II frequencies stratify populations along a continuum of differentiation less clearly correlated to actual geographic location. Double clustering analysis revealed finer intra-continental sub-clusters (e.g., Northern and Western Europe vs. South East Europe, North Africa and Southwest Asia; South and East Africa vs. West Africa), and HLA allele group patterns characteristic of these clusters. Ancient (Austronesian expansion) and more recent (Romani people in Europe) migrations, as well as extreme differentiation (Taiwan indigenous peoples, Native Americans), and interregional gene flow (Sámi, Egyptians) are also reflected by the results. Barrier analysis comparing DST and geographic location identified genetic discontinuities caused by natural barriers or human behavior explaining inter and intra-continental HLA borders for class I and class II. Overall, a progressive reduction in HLA diversity from African to Oceanian and Native American populations is noted. This analysis of HLA frequencies in a unique set of worldwide populations confirms previous findings on the remarkable similarity of class I frequencies to geography, but also shows a more complex development for class II, with implications for both human evolutionary studies and biomedical research.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Heidelberg, Germany
- *Correspondence: Esteban Arrieta-Bolaños,
| | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| |
Collapse
|
8
|
Hernández-Doño S, Sánchez-González RA, Trujillo-Vizuet MG, Zamudio-Castellanos FY, García-Silva R, Bulos-Rodríguez P, Vazquez-Guzmán CA, Cárdenas-Ramos X, de León Rodríguez D, Elías F, Domínguez-Arevillaga S, Pérez-Tirado JM, Vera-Lastra OL, Granados J, Sepúlveda-Delgado J. Protective HLA alleles against severe COVID-19: HLA-A*68 as an ancestral protection allele in Tapachula-Chiapas, Mexico. Clin Immunol 2022; 238:108990. [PMID: 35395388 PMCID: PMC8982524 DOI: 10.1016/j.clim.2022.108990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/03/2022]
Abstract
HLA is a polymorphic antigen presenter which has provided valuable information on the susceptibility of populations to viruses. Therefore, the study of HLA can reveal specific susceptibility or resistance alleles to severe COVID-19 in an ethnically dependent manner. This pilot study investigated HLA alleles associated with COVID-19 severity in Tapachula, Chiapas, Mexico. A total of 146 Mexican Mestizos were typed for HLA class I and II using PCR-SSP. The patients were classified according to the outcome (death or improvement) and the infection's severity (mild or severe). In addition, a group of exposed uninfected individuals was included. HLA-A*68 was found to be a protective allele against the severe infection and fatal outcome; pC = 0.03, OR = 0.4, 95% CI =0.20-0.86, and pC =0.009, OR = 0.3, 95% CI =0.13-0.71 respectively. HLA-DRB1*03 also appears to be a protective factor against fatal outcome pC = 0.009, OR = 0.1, 95%IC = 0.01-0.66; however, the low frequency of this allele in the studied population limits the statistical power. The severity and fatal outcome of COVID-19 patients in Tapachula, Chiapas depend more on the lack of resistance than susceptibility HLA alleles.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | - Rafael García-Silva
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pedro Bulos-Rodríguez
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | - Carlos A Vazquez-Guzmán
- Department of Internal Medicine, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico
| | | | - Diana de León Rodríguez
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico; Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico
| | - Fabiola Elías
- Facultad de Medicina Humana Campus IV, Universidad Autónoma de Chiapas, Mexico
| | | | | | - Olga Lidia Vera-Lastra
- Department of Internal Medicine, Hospital de Especialidades, Centro Médico la Raza, Chile
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús Sepúlveda-Delgado
- Research Division, Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Chiapas, Mexico.
| |
Collapse
|
9
|
Hernández-Doño S, Jakez-Ocampo J, Márquez-García JE, Ruiz D, Acuña-Alonzo V, Lima G, Llorente L, Tovar-Méndez VH, García-Silva R, Granados J, Zúñiga J, Vargas-Alarcón G. Heterogeneity of Genetic Admixture Determines SLE Susceptibility in Mexican. Front Genet 2021; 12:701373. [PMID: 34413879 PMCID: PMC8369992 DOI: 10.3389/fgene.2021.701373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory disorder for which Major Histocompatibility Complex (MHC) genes are well identified as risk factors. SLE patients present different clinical phenotypes, which are partly explained by admixture patterns variation among Mexicans. Population genetic has insight into the high genetic variability of Mexicans, mainly described through HLA gene studies with anthropological and biomedical importance. A prospective, case-control study was performed. In this study, we recruited 146 SLE patients, and 234 healthy individuals were included as a control group; both groups were admixed Mexicans from Mexico City. The HLA typing methods were based on Next Generation Sequencing and Sequence-Based Typing (SBT). The data analysis was performed with population genetic programs and statistical packages. The admixture estimations based on HLA-B and -DRB1 revealed that SLE patients have a higher Southwestern European ancestry proportion (48 ± 8%) than healthy individuals (30 ± 7%). In contrast, Mexican Native American components are diminished in SLE patients (44 ± 1%) and augmented in Healthy individuals (63 ± 4%). HLA alleles and haplotypes' frequency analysis found variants previously described in SLE patients from Mexico City. Moreover, a conserved extended haplotype that confers risk to develop SLE was found, the HLA-A∗29:02∼C∗16:01∼B∗44:03∼DRB1∗07:01∼DQB1∗02:02, pC = 0.02, OR = 1.41. Consistent with the admixture estimations, the origin of all risk alleles and haplotypes found in this study are European, while the protection alleles are Mexican Native American. The analysis of genetic distances supported that the SLE patient group is closer to the Southwestern European parental populace and farthest from Mexican Native Americans than healthy individuals. Heterogeneity of genetic admixture determines SLE susceptibility and protection in Mexicans. HLA sequencing is helpful to determine susceptibility alleles and haplotypes restricted to some populations.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Jakez-Ocampo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Molecular Biology Core Facility, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Ruiz
- Department of Dermatology, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Víctor Acuña-Alonzo
- Laboratory of Physiology, Biochemistry, and Genetics, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Víctor Hugo Tovar-Méndez
- Department of Endocrinology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rafael García-Silva
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Granados
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | |
Collapse
|
10
|
Montes-Grajales D, Olivero-Verbel J. Bioinformatics Prediction of SARS-CoV-2 Epitopes as Vaccine Candidates for the Colombian Population. Vaccines (Basel) 2021; 9:vaccines9070797. [PMID: 34358213 PMCID: PMC8310250 DOI: 10.3390/vaccines9070797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 represents an enormous challenge to global public health, with thousands of infections and deaths in over 200 countries worldwide. The purpose of this study was to identify SARS-CoV-2 epitopes with potential to interact in silico with the alleles of the human leukocyte antigen class I (HLA I) and class II (HLA II) commonly found in the Colombian population to promote both CD4 and CD8 immune responses against this virus. The generation and evaluation of the peptides in terms of HLA I and HLA II binding, immune response, toxicity and allergenicity were performed by using computer-aided tools, such as NetMHCpan 4.1, NetMHCIIpan 4.0, VaxiJem, ToxinPred and AllerTop. Furthermore, the interaction between the predicted epitopes with HLA I and HLA II proteins frequently found in the Colombian population was studied through molecular docking simulations in AutoDock Vina and interaction analysis in LigPlot+. One of the promising peptides proposed in this study is the HLA I epitope YQPYRVVVL, which displayed an estimated coverage of over 82% and 96% for the Colombian and worldwide population, respectively. These findings could be useful for the design of new epitope-vaccines that include Colombia among their population target.
Collapse
|
11
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|