1
|
Basharat Z, Murtaza Z, Siddiqa A, Alnasser SM, Meshal A. Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Mol Divers 2024; 28:581-594. [PMID: 36645537 PMCID: PMC9842218 DOI: 10.1007/s11030-023-10604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Kingella negevensis belongs to the Neisseriaceae family. It is implied that it has significant virulence potential due to RTX toxin production, which can cause hemolysis. It usually colonizes the orophayrynx of pediatric population, along with Kingella kingae but has also been isolated from vagina. Todate no report on its drug targets is present, therefore putative therapeutic targets were identified from its genomic sequence data. Traditional Chinese (n > 36,000) and Indian medicinal compounds (n > 2000) were then screened against its pyridoxine 5'-phosphate synthase, a vital therapeutic target. Prioritized TCM compounds included ZINC02525131, ZINC33833737 and ZINC85486932, and Cadiyenol, 9,11,13-Octadecatrienoic acid and 6-Gingerol from Indian medicinal library. Molecular dynamics simulation of top compounds revealed ZINC02525131 as having best stability for 100 ns, compared to Cadiyenol. ADMET profiling was then done, along with physiologically based pharmacokinetic simulation of these compounds in a population of 200 individuals, for 12 h to see fate of the ingested compound. Additionally, the impact of these compounds in a population with cirrhosis and renal impairment was also simulated. We imply in light of all the studied parameters of safety and bioavailability, etc., that 6-Gingerol from Zingiber officinalis rhizome must be proceeded further for in vitro and in vivo testing for inhibition of K. negevensis.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Zainab Murtaza
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aisha Siddiqa
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| |
Collapse
|
2
|
Morreale DP, Porsch EA, Kern BK, St Geme JW, Planet PJ. Acquisition, co-option, and duplication of the rtx toxin system and the emergence of virulence in Kingella. Nat Commun 2023; 14:4281. [PMID: 37460464 DOI: 10.1038/s41467-023-39939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The bacterial genus Kingella includes two pathogenic species, namely Kingella kingae and Kingella negevensis, as well as strictly commensal species. Both K. kingae and K. negevensis secrete a toxin called RtxA that is absent in the commensal species. Here we present a phylogenomic study of the genus Kingella, including new genomic sequences for 88 clinical isolates, genotyping of another 131 global isolates, and analysis of 52 available genomes. The phylogenetic evidence supports that the toxin-encoding operon rtxCA was acquired by a common ancestor of the pathogenic Kingella species, and that a preexisting type-I secretion system was co-opted for toxin export. Subsequent genomic reorganization distributed the toxin machinery across two loci, with 30-35% of K. kingae strains containing two copies of the rtxA toxin gene. The rtxA duplication is largely clonal and is associated with invasive disease. Assays with isogenic strains show that a single copy of rtxA is associated with reduced cytotoxicity in vitro. Thus, our study identifies key steps in the evolutionary transition from commensal to pathogen, including horizontal gene transfer, co-option of an existing secretion system, and gene duplication.
Collapse
Affiliation(s)
- Daniel P Morreale
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric A Porsch
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brad K Kern
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph W St Geme
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
3
|
Diagnostic Utility of Synovial Fluid Cell Counts and CRP in Pediatric Knee Arthritis: A 10-Year Monocentric, Retrospective Study. CHILDREN 2022; 9:children9091367. [PMID: 36138676 PMCID: PMC9498181 DOI: 10.3390/children9091367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Background: Orthopedic surgeons often use the intra-articular white blood counts (WBCs) and the percentage of polymorphonuclear cells (PMN) in the diagnosis of an acute swollen and painful knee joint in children. Today, there is no established threshold for the synovial WBC, and their differentiation, as indicative of native joint knee bacterial arthritis. We determine the sensitivity and specificity of synovial WBCs and PMN percentages in the prediction of a community-acquired, acute bacterial native joint septic arthritis (SA) in the pediatric population. Methods: A retrospective study on healthy children 0–16 years of age who underwent knee joint aspiration for a community-acquired, acute irritable knee effusion in our tertiary-care children’s hospital between May 2009 and April 2019 was conducted. We divided the study population into two groups according to the detection of bacterial arthritis in the synovial fluid (bacterial arthritis versus its absence) and compared the intra-articular leukocyte and C-reactive protein (CRP) levels. Results: Overall, we found a statistically significant difference regarding the total CRP (p = 0.017), leukocyte or PMN counts (p ≤ 0.001 in favor of a bacterial arthritis). In contrast, the percentage of the neutrophils was not determinant for the later confirmation of bacterial pathogens, and we were unable to establish diagnostically determining minimal thresholds of the intra-articular CRP and leukocyte levels. Conclusions: This pilot study suggests that either the leukocyte or PMN counts may be associated with a bacterial origin of knee arthritis in children. We plan a larger prospective interventional study in the future to confirm these findings including the investigation of other joint aspirate biomarkers.
Collapse
|
4
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
5
|
Porsch EA, Hernandez KA, Morreale DP, Montoya NR, Yount TA, St Geme JW. Pathogenic determinants of Kingella kingae disease. Front Pediatr 2022; 10:1018054. [PMID: 36304526 PMCID: PMC9592894 DOI: 10.3389/fped.2022.1018054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a leading etiology of septic arthritis, osteomyelitis, and bacteremia and an occasional cause of endocarditis in young children. The pathogenesis of K. kingae disease begins with colonization of the upper respiratory tract followed by breach of the respiratory epithelial barrier and hematogenous spread to distant sites of infection, primarily the joints, bones, and endocardium. As recognition of K. kingae as a pathogen has increased, interest in defining the molecular determinants of K. kingae pathogenicity has grown. This effort has identified numerous bacterial surface factors that likely play key roles in the pathogenic process of K. kingae disease, including type IV pili and the Knh trimeric autotransporter (adherence to the host), a potent RTX-family toxin (epithelial barrier breach), and multiple surface polysaccharides (complement and neutrophil resistance). Herein, we review the current state of knowledge of each of these factors, providing insights into potential approaches to the prevention and/or treatment of K. kingae disease.
Collapse
Affiliation(s)
- Eric A Porsch
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kevin A Hernandez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel P Morreale
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nina R Montoya
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor A Yount
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph W St Geme
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|