1
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
2
|
Chitteti R, Zuniga-Hertz JP, Masso-Silva JA, Shin J, Niesman I, Bojanowski CM, Kumar AJ, Hepokoski M, Crotty Alexander LE, Patel HH, Roth DM. E-cigarette-induced changes in cell stress and mitochondrial function. Free Radic Biol Med 2025; 228:329-338. [PMID: 39756490 DOI: 10.1016/j.freeradbiomed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Inhaling aerosols from electronic nicotine delivery systems, such as e-cigarettes (e-cigs), may pose health risks beyond those caused by nicotine intake. Exposure to e-cig aerosols can lead to the release of exosomes and metabolites into the bloodstream, potentially affecting mitochondrial physiology across the body, leading to chronic inflammatory diseases. In this study we assessed the effects of e-cig use by young healthy human subjects on the circulating exosome profile and markers of cell stress, and also defined the effects of e-cig user plasma on mitochondrial function in endothelial cells (EA. Hy 926) and epithelial cells (A549) via adoptive transfer. E-cig users had altered plasma exosome profiles, with significantly increased levels of cell free mitochondrial DNA (mtDNA), protein carbonyls, and 4-HNE relative to non-users. Plasma from e-cig users decreased maximal mitochondrial respiration and spare capacity of cells, while also increasing metabolic stress, as evidenced by changes in mitochondrial phenotype from basal to stressed in both endothelial and epithelial cells, which was corroborated by electron microscopy demonstrating structural changes in mitochondria. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels significantly increased in e-cig plasma-subjected cells. Overall, we identified alterations in plasma exosome profiles and increased markers of mitochondrial stress in e-cig users and evidence that circulating factors within plasma from e-cig users drives metabolic stress in endothelial and epithelial cells. Our results imply that e-cig use adversely affects mitochondrial function, leading to stress and potentially chronic inflammation across the body.
Collapse
Affiliation(s)
- Ramamurthy Chitteti
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA.
| | - Juan Pablo Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - Jorge A Masso-Silva
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - John Shin
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Ingrid Niesman
- San Diego State University, Electron Microscope Facility, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Christine M Bojanowski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA; Division of Pulmonary and Critical Care, Tulane University, New Orleans, LA, USA
| | - Avnee J Kumar
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - David M Roth
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| |
Collapse
|
3
|
Besaratinia A, Blumenfeld H, Tommasi S. Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping. Int J Mol Sci 2024; 25:8554. [PMID: 39126120 PMCID: PMC11313266 DOI: 10.3390/ijms25158554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (H.B.); (S.T.)
| | | | | |
Collapse
|
4
|
Zhong P, Bai L, Hong M, Ouyang J, Wang R, Zhang X, Chen P. A Comprehensive Review on Circulating cfRNA in Plasma: Implications for Disease Diagnosis and Beyond. Diagnostics (Basel) 2024; 14:1045. [PMID: 38786343 PMCID: PMC11119755 DOI: 10.3390/diagnostics14101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Circulating cfRNA in plasma has emerged as a fascinating area of research with potential applications in disease diagnosis, monitoring, and personalized medicine. Circulating RNA sequencing technology allows for the non-invasive collection of important information about the expression of target genes, eliminating the need for biopsies. This comprehensive review aims to provide a detailed overview of the current knowledge and advancements in the study of plasma cfRNA, focusing on its diverse landscape and biological functions, detection methods, its diagnostic and prognostic potential in various diseases, challenges, and future perspectives.
Collapse
Affiliation(s)
- Pengqiang Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Bai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengzhi Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Ouyang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ruizhi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoli Zhang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Li D, Xie Z, Shaikh SB, Rahman I. Abnormal expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. RESEARCH SQUARE 2024:rs.3.rs-3877316. [PMID: 38343804 PMCID: PMC10854321 DOI: 10.21203/rs.3.rs-3877316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Exposure to electronic cigarette (e-cigarette) aerosol has been linked to several health concerns, including DNA damage, elevated oxidative stress, the release of inflammatory cytokine, and dysfunctions in epithelial barriers. However, little is known about the effect of exclusive e-cigarette use on expression profiles of exosomal miRNAs, which play critical regulatory roles in many inflammatory responses and disease processes including cancer. We aim to compare the exosomal microRNA expression profile between exclusive e-cigarette users and normal controls without any tobacco product use (non-users). Methods Using plasma samples from 15 exclusive e-cigarette users and 15 non-users in the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014), we examined exosomal microRNAs expression levels through Illumina NextSeq 500/550 sequencing. The differential analyses between exclusive e-cigarette users and non-users were examined using the generalized linear model approach in the DESeq2 package in R/Bioconductor after adjusting the significant confounding effect from race. Gene enrichment analyses were conducted on target genes regulated by significant microRNAs in the differential analyses. Further, molecular-based techniques using the micro RNA mimics and inhibitors were applied for the validation of the expressions of the micro RNAs in vitro. Results We identified four microRNAs that have significantly higher expression levels in exclusive e-cigarette users than non-users including hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p. GO enrichment analysis on the target genes regulated by the four microRNAs showed that dysregulation of the four microRNAs in exclusive e-cigarette users involved in multiple cell processes such as protein kinase binding and miRNA metabolic process. KEGG pathway enrichment analysis found the four upregulated miRNAs in exclusive e-cigarette users involved in many cancer pathways such as the non-small cell lung cancer, small cell lung cancer, pancreatic cancer, p53 signaling pathway, Hippo signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway. Overexpression of miRNA hsa-miR-125b-5p was shown to promote DNA damage in bronchial epithelia cells. Conclusions Four plasma exosomal microRNAs involved in cancer development had higher expression levels in exclusive e-cigarette users than non-users, which might indicate a potentially elevated risk of cancer among exclusive e-cigarette users.
Collapse
|
6
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
7
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
8
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Been T, Alakhtar B, Traboulsi H, Tsering T, Bartolomucci A, Heimbach N, Paoli S, Burnier J, Mann KK, Eidelman DH, Baglole CJ. Chronic low-level JUUL aerosol exposure causes pulmonary immunologic, transcriptomic, and proteomic changes. FASEB J 2023; 37:e22732. [PMID: 36694994 DOI: 10.1096/fj.202201392r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023]
Abstract
E-cigarettes currently divide public opinion, with some considering them a useful tool for smoking cessation and while others are concerned with potentially adverse health consequences. However, it may take decades to fully understand the effects of e-cigarette use in humans given their relative newness on the market. This highlights the need for comprehensive preclinical studies investigating the effects of e-cigarette exposure on health outcomes. Here, we investigated the impact of chronic, low-level JUUL aerosol exposure on multiple lung outcomes. JUUL is a brand of e-cigarettes popular with youth and young adults. To replicate human exposures, 8- to 12-week-old male and female C57BL/6J mice were exposed to commercially available JUUL products (containing 59 mg/ml nicotine). Mice were exposed to room air, PG/VG, or JUUL daily for 4 weeks. After the exposure period, inflammatory markers were assessed via qRT-PCR, multiplex cytokine assays, and differential cell count. Proteomic and transcriptomic analyses were also performed on samples isolated from the lavage of the lungs; this included unbiased analysis of proteins contained within extracellular vesicles (EVs). Mice exposed to JUUL aerosols for 4 weeks had significantly increased neutrophil and lymphocyte populations in the BAL and some changes in cytokine mRNA expression. However, BAL cytokines did not change. Proteomic and transcriptomic analysis revealed significant changes in numerous biological pathways including neutrophil degranulation, PPAR signaling, and xenobiotic metabolism. Thus, e-cigarettes are not inert and can cause significant cellular and molecular changes in the lungs.
Collapse
Affiliation(s)
- Terek Been
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bayan Alakhtar
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Thupten Tsering
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Alexandra Bartolomucci
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Nicole Heimbach
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sofia Paoli
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Julia Burnier
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Xie Z, Ruan J, Jiang Y, Zhang B, Chen T, Luo J, Li D. Potential Impact of FDA Flavor Enforcement Policy on Vaping Behavior on Twitter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12836. [PMID: 36232136 PMCID: PMC9565006 DOI: 10.3390/ijerph191912836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In January 2020, the FDA announced an electronic cigarette (e-cigarette) flavor enforcement policy to restrict the sale of all unauthorized cartridge-based flavored e-cigarettes except tobacco and menthol flavors, which was implemented on 6 February 2020. This study aimed to understand the potential influence of this policy on one vaping behavior change-quitting vaping-using Twitter data. Twitter posts (tweets) related to e-cigarettes were collected between June 2019 and October 2020 through a Twitter streaming API. Based on the geolocation and keywords related to quitting vaping, tweets mentioning quitting vaping from the US were filtered. The demographics (age and gender) of Twitter users who mentioned quitting vaping were further inferred using a deep learning algorithm (deepFace). The proportion of tweets and Twitter users mentioning quitting vaping were compared between before and after the announcement and implementation of the flavor policy. Compared to before the FDA flavor policy, the proportion of tweets (from 0.11% to 0.20% and 0.24%) and Twitter users (from 0.15% to 0.70% and 0.86%) mentioning quitting vaping were significantly higher after the announcement and implementation of the policy (p-value < 0.001). In addition, there was an increasing trend in the proportion of female and young adults (18-35 years old) mentioning quitting vaping on Twitter after the announcement and implementation of the policy compared to that before the policy. Our results showed that the FDA flavor enforcement policy did have a positive impact on quitting vaping on Twitter. Our study provides an initial evaluation of the potential influence of the FDA flavor enforcement policy on user vaping behavior.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jinlong Ruan
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Yifan Jiang
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Bokai Zhang
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Tianlang Chen
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Yang Y, Liu Y, Chai Y, Liu K, Hu W, Zhao K, Zhu Y, Gao P, Huang Q, Zhang C. Exosomes in pathogenesis, diagnosis, and treatment of pulmonary fibrosis. Front Pharmacol 2022; 13:927653. [PMID: 36091791 PMCID: PMC9453030 DOI: 10.3389/fphar.2022.927653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is a group of interstitial lung diseases that seriously endanger human life and health. Despite the current advances in research on the pathogenesis and treatment of PF, the overall quality of survival and survival rates of PF patients remain low, prompting the search for more effective therapeutic approaches. Exosomes are nanoscale vesicles with diameters ranging from approximately 30–150 nm, capable of transporting a variety of molecules in the body and mediating intercellular communication. There is an increasing number of studies focusing on the role of exosomes in PF. This review demonstrates the significance of exosomes in the pathogenesis, diagnosis, and treatment of PF. Exosomes are able to influence inflammatory, immune, and extracellular matrix deposition processes in PF and regulate the corresponding cytokines. Some exosomes detected in sputum, blood, and bronchoalveolar lavage fluid may be used as potential diagnostic and prognostic biomarkers for PF. Exosomes derived from several cells, such as mesenchymal stem cells, have demonstrated potential as PF therapeutic agents. Drug delivery systems using exosomes may also provide new insights into PF therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Hu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keni Zhao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peiyang Gao, ; Qingsong Huang, ; Chuantao Zhang,
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peiyang Gao, ; Qingsong Huang, ; Chuantao Zhang,
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Peiyang Gao, ; Qingsong Huang, ; Chuantao Zhang,
| |
Collapse
|
12
|
Lu X, Sun L, Xie Z, Li D. Perception of the Food and Drug Administration Electronic Cigarette Flavor Enforcement Policy on Twitter: Observational Study. JMIR Public Health Surveill 2022; 8:e25697. [PMID: 35348461 PMCID: PMC9006136 DOI: 10.2196/25697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background
On January 2, 2020, the US Food and Drug Administration (FDA) released the electronic cigarette (e-cigarette) flavor enforcement policy to prohibit the sale of all flavored cartridge–based e-cigarettes, except for menthol and tobacco flavors.
Objective
This research aimed to examine the public perception of this FDA flavor enforcement policy and its impact on the public perception of e-cigarettes on Twitter.
Methods
A total of 2,341,660 e-cigarette–related tweets and 190,490 FDA flavor enforcement policy–related tweets in the United States were collected from Twitter before (between June 13 and August 22, 2019) and after (between January 2 and March 30, 2020) the announcement of the FDA flavor enforcement policy. Sentiment analysis was conducted to detect the changes in the public perceptions of the policy and e-cigarettes on Twitter. Topic modeling was used for finding frequently discussed topics about e-cigarettes.
Results
The proportion of negative sentiment tweets about e-cigarettes significantly increased after the announcement of the FDA flavor enforcement policy compared with before the announcement of the policy. In contrast, the overall sentiment toward the FDA flavor enforcement policy became less negative. The FDA flavor enforcement policy was the most popular topic associated with e-cigarettes after the announcement of the FDA flavor enforcement policy. Twitter users who discussed about e-cigarettes started to talk about other alternative ways of getting e-cigarettes after the FDA flavor enforcement policy.
Conclusions
Twitter users’ perceptions of e-cigarettes became more negative after the announcement of the FDA flavor enforcement policy.
Collapse
Affiliation(s)
- Xinyi Lu
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Li Sun
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
13
|
Le HHT, Liu CW, Denaro P, Jousma J, Shao NY, Rahman I, Lee WH. Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract. Stem Cell Res Ther 2021; 12:593. [PMID: 34863290 PMCID: PMC8643021 DOI: 10.1186/s13287-021-02654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction. METHODS Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling. RESULTS 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining vascular barrier, reducing reactive oxygen species level, and increasing migration capacity. CONCLUSION This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.
Collapse
Affiliation(s)
- Hoai Huong Thi Le
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Chen-Wei Liu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Philip Denaro
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ning-Yi Shao
- Health Sciences, University of Macau, Macau, China
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA.
| |
Collapse
|
14
|
Kotoulas SC, Katsaounou P, Riha R, Grigoriou I, Papakosta D, Spyratos D, Porpodis K, Domvri K, Pataka A. Electronic Cigarettes and Asthma: What Do We Know So Far? J Pers Med 2021; 11:jpm11080723. [PMID: 34442368 PMCID: PMC8399607 DOI: 10.3390/jpm11080723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Electronic cigarettes (EC) are a novel product, marketed as an alternative to tobacco cigarette. Its effects on human health have not been investigated widely yet, especially in specific populations such as patients with asthma. With this review, we use the existing literature in order to answer four crucial questions concerning: (1) ECs' role in the pathogenesis of asthma; (2) ECs' effects on lung function and airway inflammation in patients with asthma; (3) ECs' effects on asthma clinical characteristics in asthmatics who use it regularly; and (4) ECs' effectiveness as a smoking cessation tool in these patients. Evidence suggests that many EC compounds might contribute to the pathogenesis of asthma. Lung function seems to deteriorate by the use of EC in this population, while airway inflammation alters, with the aggravation of T-helper-type-2 (Th2) inflammation being the most prominent but not the exclusive effect. EC also seems to worsen asthma symptoms and the rate and severity of exacerbations in asthmatics who are current vapers, whilst evidence suggests that its effectiveness as a smoking cessation tool might be limited. Asthmatic patients should avoid using EC.
Collapse
Affiliation(s)
- Serafeim-Chrysovalantis Kotoulas
- Clinic of Respiratory Failure, General Hospital of Thessaloniki Georgios Papanikolaou, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (I.G.); (A.P.)
- Correspondence: ; Tel.: +30-6977-705450
| | - Paraskevi Katsaounou
- 1st ICU “Evangelismos Hospital”, School of Medicine, National and Kapodistrian University of Athens, Ypsilantou 45-47, 10676 Athens, Greece;
| | - Renata Riha
- Sleep Research Unit, Department of Sleep Medicine, The University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK;
| | - Ioanna Grigoriou
- Clinic of Respiratory Failure, General Hospital of Thessaloniki Georgios Papanikolaou, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (I.G.); (A.P.)
| | - Despoina Papakosta
- Department of Pulmonary Medicine, General Hospital of Thessaloniki “Georgios Papanikolaou”, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (D.P.); (D.S.); (K.P.); (K.D.)
| | - Dionysios Spyratos
- Department of Pulmonary Medicine, General Hospital of Thessaloniki “Georgios Papanikolaou”, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (D.P.); (D.S.); (K.P.); (K.D.)
| | - Konstantinos Porpodis
- Department of Pulmonary Medicine, General Hospital of Thessaloniki “Georgios Papanikolaou”, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (D.P.); (D.S.); (K.P.); (K.D.)
| | - Kalliopi Domvri
- Department of Pulmonary Medicine, General Hospital of Thessaloniki “Georgios Papanikolaou”, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (D.P.); (D.S.); (K.P.); (K.D.)
| | - Athanasia Pataka
- Clinic of Respiratory Failure, General Hospital of Thessaloniki Georgios Papanikolaou, Aristotle University of Thessaloniki, Leoforos Papanikolaou, 57010 Thessaloniki, Greece; (I.G.); (A.P.)
| |
Collapse
|
15
|
Jarrell ZR, Smith MR, He X, Orr M, Jones DP, Go YM. Firsthand and Secondhand Exposure Levels of Maltol-Flavored Electronic Nicotine Delivery System Vapors Disrupt Amino Acid Metabolism. Toxicol Sci 2021; 182:70-81. [PMID: 34009373 DOI: 10.1093/toxsci/kfab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electronic nicotine delivery system (ENDS) use has become a popular, generally regarded as safe, alternative to tobacco use. The e-liquids used for ENDS vapor generation commonly contain flavoring agents, such as maltol, which have been subjected to little investigation of their effects on lung health from ENDS usage. In the present study, we examined the impacts of firsthand (3.9 mM) and secondhand (3.9 µM) exposure levels to maltol-flavored ENDS vapors on lung metabolism. Human lung bronchial epithelial cells were exposed to ENDS vapors using a robotic system for controlled generation and delivery of exposures, and the effects on metabolism were evaluated using high-resolution metabolomics. The results show that maltol in e-liquids impacts lung airway epithelial cell metabolism at both firsthand and secondhand exposure levels. The effects of maltol were most notably seen in amino acid metabolism while oxidative stress was observed with exposure to all ENDS vapors including e-liquids alone and maltol-contained e-liquids. Many effects of firsthand exposure were also observed with secondhand exposure, suggesting need for systematic investigation of both firsthand and secondhand effects of flavored ENDS vapors on lung metabolism and risk of lung disease.
Collapse
Affiliation(s)
- Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| | - Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
16
|
Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on Epigenetics Alterations Associated with Smoking and Vaping. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab022. [PMID: 35330676 PMCID: PMC8788872 DOI: 10.1093/function/zqab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes, electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults. Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to similar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respiratory cells and provide future research directions in epigenetic studies related to vaping.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Address correspondence to D.L. (e-mail: )
| |
Collapse
|
17
|
Pastor L, Vera E, Marin JM, Sanz-Rubio D. Extracellular Vesicles from Airway Secretions: New Insights in Lung Diseases. Int J Mol Sci 2021; 22:E583. [PMID: 33430153 PMCID: PMC7827453 DOI: 10.3390/ijms22020583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Lung diseases (LD) are one of the most common causes of death worldwide. Although it is known that chronic airway inflammation and excessive tissue repair are processes associated with LD such as asthma, chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF), their specific pathways remain unclear. Extracellular vesicles (EVs) are heterogeneous nanoscale membrane vesicles with an important role in cell-to-cell communication. EVs are present in general biofluids as plasma or urine but also in secretions of the airway as bronchoalveolar lavage fluid (BALF), induced sputum (IS), nasal lavage (NL) or pharyngeal lavage. Alterations of airway EV cargo could be crucial for understanding LD. Airway EVs have shown a role in the pathogenesis of some LD such as eosinophil increase in asthma, the promotion of lung cancer in vitro models in COPD and as biomarkers to distinguishing IPF in patients with diffuse lung diseases. In addition, they also have a promising future as therapeutics for LD. In this review, we focus on the importance of airway secretions in LD, the pivotal role of EVs from those secretions on their pathophysiology and their potential for biomarker discovery.
Collapse
Affiliation(s)
- Laura Pastor
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
| | - Elisabeth Vera
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
- Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jose M. Marin
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
- Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28029 Madrid, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Instituto de Investigación Sanitaria de Aragón (IISAragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (L.P.); (E.V.); (J.M.M.)
| |
Collapse
|