1
|
Ali MS, Na SH, Moon BY, Kang HY, Kang HS, Kim SJ, Kim TS, Heo YE, Hwang YJ, Yoon SS, Lim SK. Antimicrobial Resistance Profiles and Molecular Characteristics of Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Typhimurium Isolates from Food Animals During 2010-2021 in South Korea. Foodborne Pathog Dis 2024; 21:634-642. [PMID: 39029478 DOI: 10.1089/fpd.2023.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Salmonella is emerging as a worldwide public health concern. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ESBL-producing Salmonella enterica serovar Typhimurium (S. Typhimurium). We obtained a total of 995 S. Typhimurium isolates from the feces and carcasses of pigs (n = 678), chickens (n = 202), and cattle (n = 115) during 2010-2021 in Korea. We found that 35 S. Typhimurium isolates (3.5%) showed resistance to ceftiofur: pigs (51.4%, 18/35) and cattle (42.9%, 15/35). All of the ceftiofur-resistant S. Typhimurium isolates demonstrated multidrug resistance. Moreover, ceftiofur-resistant S. Typhimurium isolates displayed significantly higher rates of resistance to chloramphenicol and trimethoprim/sulfamethoxazole than ceftiofur-susceptible S. Typhimurium isolates (p < 0.05). The ceftiofur-resistant S. Typhimurium isolates produced four different CTX-M-type β-lactamase, comprising blaCTX-M-55 in the majority (51.4%, 18/35), followed by blaCTX-M-65 (28.6%, 10/35), blaCTX-M-14 (17.1%, 6/35), and blaCTX-M-1 (2.9%, 1/35). Among the 35 ceftiofur-resistant S. Typhimurium isolates, 16 blaCTX-M-55-positive isolates and one blaCTX-M-1-positive isolate were transferred to recipient Escherichia coli RG488 by conjugation. The predominantly found transposable units were blaCTX-M-55-orf477 (45.7%, 16/35), followed by blaCTX-M-65-IS903 (28.6%, 10/35) and blaCTX-M-14-IS903 (17.1%, 6/35). Ceftiofur-resistant S. Typhimurium represented 19 types, with types P1-19 (22.9%, 8/35) and P12-34 (22.9%, 8/35) making up the majority and being found in most farms nationwide. Sequence types (STs) were different by animal species: ST19 (48.6%, 17/35) and ST34 (42.9%, 15/35) were mostly found STs in pigs and cattle, respectively. These findings showed that food animals, especially pigs and cattle, act as reservoirs of blaCTX-M-harboring S. Typhimurium that can potentially be spread to humans.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Seok-Hyeon Na
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Centre for Infectious Diseases Research, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Hee-Seung Kang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Su-Jeong Kim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Tae-Sun Kim
- Public Health and Environment Institute of Gwangju, Gwangju, Republic of Korea
| | - Ye-Eun Heo
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Soon Seek Yoon
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea
| |
Collapse
|
2
|
Rodrigues RDS, Araujo NFD, Viana C, Yamatogi RS, Nero LA. In Silico Detection of Integrons and Their Relationship with Resistance Phenotype of Salmonella Isolates from a Brazilian Pork Production Chain. Foodborne Pathog Dis 2024; 21:395-402. [PMID: 38917456 DOI: 10.1089/fpd.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
The pork production chain is an important reservoir of antimicrobial resistant bacteria. This study identified and characterized integrons in Salmonella isolates from a Brazilian pork production chain and associate them with their antibiotic resistance pattern. A total of 41 whole-genome sequencing data of nontyphoidal Salmonella were analyzed using PlasmidSPAdes and IntegronFinder software. Nine isolates (21.9%) had some integrons identified (complete and/or incomplete). Six complete class 1 integrons were found, with streptomycin resistance genes (aadA1, aadA2) alone or downstream of a trimethoprim resistance gene (dfrA1, dfrA12), and some also containing resistance genes for sulfonamides (sul1, sul3) and chloramphenicol (cmlA1). Class 2 integron was detected in only one isolate, containing dfrA1-sat2-aadA1 gene cassettes. Five isolates harbored CALINs-clusters attC but lacking integrases-with antimicrobial resistance genes typically found in integron structures. In all, integrons were observed among four serotypes: Derby, Bredeney, Panama, and monophasic var. Typhimurium I 4,[5],12:i:-. The association of integrons with antibiotic resistance phenotype showed that these elements were predominantly identified in multidrug resistance isolates, and six of the seven gentamicin-resistant isolates had integrons. So, surveillance of integrons in Salmonella should be performed to identify the potential for the spread of antimicrobial resistance genes among bacteria.
Collapse
Affiliation(s)
- Rafaela da Silva Rodrigues
- InsPOA - Laboratory of Food Inspection, Department of Veterinary Medicine, Federal University of Viçosa, Campus Universitário, Viçosa, Brazil
| | - Natália Ferreira de Araujo
- InsPOA - Laboratory of Food Inspection, Department of Veterinary Medicine, Federal University of Viçosa, Campus Universitário, Viçosa, Brazil
| | - Cibeli Viana
- InsPOA - Laboratory of Food Inspection, Department of Veterinary Medicine, Federal University of Viçosa, Campus Universitário, Viçosa, Brazil
| | - Ricardo Seiti Yamatogi
- InsPOA - Laboratory of Food Inspection, Department of Veterinary Medicine, Federal University of Viçosa, Campus Universitário, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratory of Food Inspection, Department of Veterinary Medicine, Federal University of Viçosa, Campus Universitário, Viçosa, Brazil
| |
Collapse
|
3
|
Moraes DMC, Almeida AMDS, Andrade MA, Nascente EDP, Duarte SC, Nunes IA, Jayme VDS, Minafra C. Antibiotic Resistance Profile of Salmonella sp. Isolates from Commercial Laying Hen Farms in Central-Western Brazil. Microorganisms 2024; 12:669. [PMID: 38674612 PMCID: PMC11052260 DOI: 10.3390/microorganisms12040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Microbial resistance to antibiotics poses a significant threat to both human and animal health, necessitating international efforts to mitigate this issue. This study aimed to assess the resistance profiles of Salmonella sp. isolates and identify the presence of intl1, sul1, and blaTEM resistance genes within antigenically characterized isolates, including Agona, Livingstone, Cerro, Schwarzengrund, Salmonella enterica subsp. enterica serotype O:4.5, Anatum, Enteritidis, Johannesburg, Corvallis, and Senftenberg. These isolates underwent susceptibility testing against 14 antibiotics. The highest resistance percentages were noted for sulfamethoxazole (91%), sulfonamides (51%), and ceftiofur (28.9%), while no resistance was observed for ciprofloxacin. Salmonella Johannesburg and Salmonella Corvallis showed resistance to one antibiotic, whereas other serovars were resistant to at least two. Salmonella Schwarzengrund exhibited resistance to 13 antibiotics. The intl1 gene was detected in six out of the ten serovars, and the sul1 gene in three, always co-occurring with intl1. The blaTEM gene was not identified. Our findings highlight the risk posed by the detected multiple resistances and genes to animal, human, and environmental health. The multidrug resistance, especially to third-generation cephalosporins and fluoroquinolones, highlights the need for stringent monitoring of Salmonella in laying hens. The potential of the environment, humans, eggs, and their products to act as vectors for antibiotic resistance represents a significant concern for One Health.
Collapse
Affiliation(s)
- Dunya Mara Cardoso Moraes
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | - Ana Maria De Souza Almeida
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | - Maria Auxiliadora Andrade
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | - Eduardo de Paula Nascente
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | | | - Iolanda Aparecida Nunes
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | - Valéria De Sá Jayme
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
| | - Cíntia Minafra
- Department of Veterinary Medicine, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (D.M.C.M.); (A.M.D.S.A.); (M.A.A.); (E.d.P.N.); (I.A.N.); (V.D.S.J.)
- Center for Food Research, Federal University of Goiás, Goiania 74660-970, Goiás, Brazil
| |
Collapse
|
4
|
Ju Z, Cui L, Lei C, Song M, Chen X, Liao Z, Zhang T, Wang H. Whole-Genome Sequencing Analysis of Non-Typhoidal Salmonella Isolated from Breeder Poultry Farm Sources in China, 2020-2021. Antibiotics (Basel) 2023; 12:1642. [PMID: 37998844 PMCID: PMC10669045 DOI: 10.3390/antibiotics12111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Non-typhoidal salmonellosis is a dangerous foodborne disease that causes enormous economic loss and threatens public health worldwide. The consumption of food, especially poultry or poultry products, contaminated with non-typhoidal Salmonella (NTS) is the main cause of human salmonellosis. To date, no research has identified the molecular epidemiological characteristics of NTS strains isolated from breeder chicken farms in different provinces of China. In our study, we investigated the antimicrobial resistance, phylogenetic relationships, presence of antimicrobial resistance and virulence genes, and plasmids of NTS isolates recovered from breeder chicken farms in five provinces of China between 2020 and 2021 by using a whole-genome sequencing (WGS) approach and phenotypic methods. All sequenced isolates belonged to six serovars with seven sequence types. Nearly half of the isolates (44.87%) showed phenotypic resistance to at least three classes of antimicrobials. Salmonella enterica serotype Kentucky harbored more antimicrobial resistance genes than the others, which was highly consistent with phenotypic resistance. Furthermore, the carried rate of 104 out of 135 detected virulence genes was 100%. Overall, our WGS results highlight the need for the continuous monitoring of, and additional studies on, the antimicrobial resistance of NTS.
Collapse
Affiliation(s)
- Zijing Ju
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Lulu Cui
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Changwei Lei
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Mengze Song
- Shandong Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (L.C.); (M.S.)
| | - Xuan Chen
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Ziwei Liao
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Tiejun Zhang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| | - Hongning Wang
- Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China; (Z.J.); (C.L.); (X.C.); (Z.L.); (T.Z.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China
| |
Collapse
|
5
|
Wu S, Ji J, Carole NVD, Yang J, Yang Y, Sun J, Ye Y, Zhang Y, Sun X. Combined metabolomics and transcriptomics analysis reveals the mechanism of antibiotic resistance of Salmonella enterica serovar Typhimurium after acidic stress. Food Microbiol 2023; 115:104328. [PMID: 37567621 DOI: 10.1016/j.fm.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nanfack V D Carole
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Noenchat P, Direksin K, Sornplang P. The phenotypic and genotypic antimicrobial resistance patterns of Salmonella isolated from chickens and meat at poultry slaughterhouses in Japan and Thailand. Vet World 2023; 16:1527-1533. [PMID: 37621529 PMCID: PMC10446718 DOI: 10.14202/vetworld.2023.1527-1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Poultry meat is a popular food consumed globally. However, poultry farming is a source of Salmonella contamination which causes human salmonellosis. This study aimed to estimate the prevalence and antimicrobial resistance (AMR) of Salmonella among chickens and meat at poultry slaughterhouses in province study areas in Thailand and Japan. Materials and Methods Chicken meat and feces samples were collected in Thailand and Japan. In Nakhon Ratchasima Province, Thailand, 558 samples were obtained from slaughterhouses from January 2021 to March 2022. In Gifu Prefecture, Japan, 140 samples (70 each of intestinal contents and meat) were purchased from slaughterhouses from June to October 2022. For Salmonella detection, the samples were cultivated according to the International Organization for Standardization 6579:2002/AMD 1:2007 method and confirmed using polymerase chain reaction (PCR) and agglutination tests for serotyping. Isolated Salmonella were tested for AMR to nine antibiotics using the disk diffusion method. Selected phenotypic multidrug-resistant (MDR) isolates were evaluated for AMR genes (AMRGs) using PCR. Results Salmonella prevalence from chickens and meat at slaughterhouses in Thailand and Japan was 41.2% and 40.7%, respectively. All the Salmonella isolates in Japan were serotyped as Schwarzengrund, and no Salmonella isolates were resistant to the nine antibiotics tested. In contrast, most of the Thai Salmonella isolates from chicken cloacal swabs and meat were resistant to doxycycline (78.3%) and colistin (63.5%). The prevalence of MDR Salmonella (MDRS) in chickens and meat from Thailand and Japan was 29.1% (67/230) and 0% (0/57), respectively. However, the most frequent AMRGs found in MDRS in Thailand were extended-spectrum beta-lactamase-Temoneira (ESBL-TEM) (45.1%). All isolated Salmonella from Japan revealed a class 1 integron gene (Int-1). Conclusion Phenotypic MDRS isolates from Thailand showed the greatest correlation to AMRG and ESBL-TEM. Although there were no phenotypic AMR Salmonella isolates found in Japan, they can be found associated with Int-1, which may carry other AMRGs within the gene cassettes.
Collapse
Affiliation(s)
- Pattarakitti Noenchat
- Sakon Nakhon Provincial Livestock Office, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Sakon Nakhon 47000, Thailand
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kochakorn Direksin
- Division of Livestock Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pairat Sornplang
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Yuan P, Deng Z, Qiu P, Yin Z, Bai Y, Su Z, He J. Bimetallic Metal−Organic framework nanorods with peroxidase mimicking activity for selective colorimetric detection of Salmonella typhimurium in food. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Abd-Elghany SM, Fathy TM, Zakaria AI, Imre K, Morar A, Herman V, Pașcalău R, Șmuleac L, Morar D, Imre M, Sallam KI. Prevalence of Multidrug-Resistant Salmonella enterica Serovars in Buffalo Meat in Egypt. Foods 2022; 11:foods11182924. [PMID: 36141052 PMCID: PMC9498544 DOI: 10.3390/foods11182924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to investigate the presence of Salmonella spp. prevalence in buffalo meat in Egypt, along with studying the antimicrobial susceptibility of the recovered isolates. Salmonella spp. was detected in 25% of tested buffalo meat. A total of 53 (100%) isolates were genetically verified by PCR as Salmonella, based on the detection of the invA gene. The stn and hilA genes were detected in 71.7% (38/53), and 83.0% (44/53) of the recovered isolates, respectively. Salmonella Enteritidis (11/53; 20.7%) was the most commonly isolated serovar, followed by S. Typhimurium (9/53; 17%), S. Montevideo (6/53; 11.3%), meanwhile, S. Chester, S. Derby, S. Papuana, and S. Saintpaul were the least commonly identified serovars (a single strain for each; 1.9%). Among the 16 antimicrobials tested, amikacin, imipenem, gentamicin, cefotaxime, meropenem, ciprofloxacin, and enrofloxacin were the most effective drugs, with bacterial susceptibility percentages of 98.1%, 94.3%, 92.5%, 86.8%, 83.0%, 73.6%, and 69.8%, respectively. Meanwhile, the least effective ones were erythromycin, streptomycin, clindamycin, cefepime, and nalidixic acid, with bacterial resistance percentages of 100%, 98.1%, 88.7%, 77.4%, and 66%, respectively. Interestingly, the high contamination level of Egyptian buffalo meat with multidrug-resistant Salmonella (79.2%; 42/53) can constitute a problem for public health. Therefore, programs to control Salmonella contamination are needed in Egypt.
Collapse
Affiliation(s)
- Samir Mohammed Abd-Elghany
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (S.M.A.-E.); or (K.I.); Tel.: +20-100-047-9670 (S.M.A-E.); +40-256-277-186 (K.I.)
| | - Takwa Mohammed Fathy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
- Correspondence: (S.M.A.-E.); or (K.I.); Tel.: +20-100-047-9670 (S.M.A-E.); +40-256-277-186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Raul Pașcalău
- Department of Agricultural Technologies, Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Laura Șmuleac
- Department of Sustainable Development and Environmental Engineering, Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Doru Morar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Mirela Imre
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timişoara, Romania
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
9
|
Molecular Detection of Integrons, Colistin and β-lactamase Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Chickens and Rats Inhabiting Poultry Farms. Microorganisms 2022; 10:microorganisms10020313. [PMID: 35208768 PMCID: PMC8876313 DOI: 10.3390/microorganisms10020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid growth of multidrug-resistant Salmonella is a global public health concern. The aim of this study was to detect integrons, colistin and β-lactamase resistance genes in Salmonella enteritidis and typhimurium. A total of 63 isolates of S. enteritidis (n = 18) and S. typhimurium (n = 45) from fecal samples of layers and rats at chicken farms were screened for antibiotic resistant genes. Conventional PCR was performed for the detection of integrons (classes 1, 2, and 3), colistin (mcr-1-5) and β-lactamase (blaCTX-M, blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, blaCTX-M-15, blaTEM, blaSHV, and blaOXA) resistant genes. Of these isolates, 77% and 27% of S. typhimurium and S. enteritidis harboured the mcr-4 encoded gene for colistin, respectively. The prevalence of class 1 integrons for S. typhimurium and S. enteritidis was 100% for each serovar, while for class 2 integrons of S. typhimurium and S. enteritidis it was 49% and 33% respectively, while class 3 integron genes was not detected. Our study also detected high levels of β-lactamase encoding genes (bla gene), namely blaCTX-M, blaCTX-M-1, blaCTX-M-9 and blaTEM from both S. typhimurium and S. enteritidis. This, to our knowledge, is the first report of mcr-4 resistance gene detection in Salmonella serovars in South Africa. This study also highlights the importance of controlling rats at poultry farms in order to reduce the risk of transmission of antibiotic resistance to chickens and eventually to humans.
Collapse
|
10
|
Salmonella Vaccine Vector System for Foot-and-Mouth Disease Virus and Evaluation of Its Efficacy with Virus-Like Particles. Vaccines (Basel) 2021; 9:vaccines9010022. [PMID: 33466461 PMCID: PMC7824887 DOI: 10.3390/vaccines9010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/11/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious and devastating disease in livestock animals and has a great potential to cause severe economic loss worldwide. The major antigen of FMDV capsid protein, VP1, contains the major B-cell epitope responsible for effectively eliciting protective humoral immunity. In this study, irradiated Salmonella Typhimurium (KST0666) were used as transgenic vectors containing stress-inducible plasmid pRECN-VP1 to deliver the VP1 protein from FMDV-type A/WH/CHA/09. Mice were orally inoculated with ATOMASal-L3 harboring pRECN-VP1, and FMDV virus-like particles, where (VLPFMDV)-specific humoral, mucosal, and cellular immune responses were evaluated. Mice vaccinated with attenuated Salmonella (KST0666) expressing VP1 (named KST0669) showed high levels of VLP-specific IgA in feces and IgG in serum, with high FMDV neutralization titer. Moreover, KST0669-vaccinated mice showed increased population of IFN-γ (type 1 T helper cells; Th1 cells)-, IL-5 (Th2 cells)-, and IL-17A (Th17 cells)-expressing CD4+ as well as activated CD8+ T cells (IFN-γ+CD8+ cells), detected by stimulating VLPFMDV. All data indicate that our Salmonella vector system successfully delivered FMDV VP1 to immune cells and that the humoral and cellular efficacy of the vaccine can be easily evaluated using VLPFMDV in a Biosafety Level I (BSL1) laboratory.
Collapse
|