1
|
Pfau T, Bruce OL, Sawatsky A, Leguillette R, Edwards WB. Dirt Track Surface Preparation and Associated Differences in Speed, Stride Length, and Stride Frequency in Galloping Horses. SENSORS (BASEL, SWITZERLAND) 2024; 24:2441. [PMID: 38676058 PMCID: PMC11054522 DOI: 10.3390/s24082441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
In racehorses, the risk of musculoskeletal injury is linked to a decrease in speed and stride length (SL) over consecutive races prior to injury. Surface characteristics influence stride parameters. We hypothesized that large changes in stride parameters are found during galloping in response to dirt racetrack preparation. Harrowing of the back stretch of a half-mile dirt racetrack was altered in three individual lanes with decreasing depth from the inside to the outside. Track underlay compaction and water content were changed between days. Twelve horses (six on day 2) were sequentially galloped at a target speed of 16 ms-1 across the three lanes. Speed, stride frequency (SF), and SL were quantified with a GPS/GNSS logger. Mixed linear models with speed as covariate analyzed SF and SL, with track hardness and moisture content as fixed factors (p < 0.05). At the average speed of 16.48 ms-1, hardness (both p < 0.001) and moisture content (both p < 0.001) had significant effects on SF and SL. The largest difference in SL of 0.186 m between hardness and moisture conditions exceeded the 0.10 m longitudinal decrease over consecutive race starts previously identified as injury predictor. This suggests that detailed measurements of track conditions might be useful for refining injury prediction models.
Collapse
Affiliation(s)
- Thilo Pfau
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.S.); (W.B.E.)
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Olivia L. Bruce
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andrew Sawatsky
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.S.); (W.B.E.)
| | - Renaud Leguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - W. Brent Edwards
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.S.); (W.B.E.)
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Forbes B, Ho W, Parkes RSV, Sepulveda Caviedes MF, Pfau T, Martel DR. Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction. Animals (Basel) 2024; 14:1086. [PMID: 38612325 PMCID: PMC11011192 DOI: 10.3390/ani14071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Racehorses commonly train and race in one direction, which may result in gait asymmetries. This study quantified gait symmetry in two cohorts of Thoroughbreds differing in their predominant exercising direction; we hypothesized that there would be significant differences in the direction of asymmetry between cohorts. METHODS 307 Thoroughbreds (156 from Singapore Turf Club (STC)-anticlockwise; 151 from Hong Kong Jockey Club (HKJC)-clockwise) were assessed during a straight-line, in-hand trot on firm ground with inertial sensors on their head and pelvis quantifying differences between the minima, maxima, upward movement amplitudes (MinDiff, MaxDiff, UpDiff), and hip hike (HHD). The presence of asymmetry (≥5 mm) was assessed for each variable. Chi-Squared tests identified differences in the number of horses with left/right-sided movement asymmetry between cohorts and mixed model analyses evaluated differences in the movement symmetry values. RESULTS HKJC had significantly more left forelimb asymmetrical horses (Head: MinDiff p < 0.0001, MaxDiff p < 0.03, UpDiff p < 0.01) than STC. Pelvis MinDiff (p = 0.010) and UpDiff (p = 0.021), and head MinDiff (p = 0.006) and UpDiff (p = 0.017) values were significantly different between cohorts; HKJC mean values indicated left fore- and hindlimb asymmetry, and STC mean values indicated right fore- and hindlimb asymmetry. CONCLUSION the asymmetry differences between cohorts suggest that horses may adapt their gait to their racing direction, with kinematics reflecting reduced 'outside' fore- and hindlimb loading.
Collapse
Affiliation(s)
- Bronte Forbes
- Hong Kong Jockey Club, Hong Kong, China; (B.F.); (W.H.)
- Singapore Turf Club, Singapore 738078, Singapore
| | - Winnie Ho
- Hong Kong Jockey Club, Hong Kong, China; (B.F.); (W.H.)
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China;
| | - Rebecca S. V. Parkes
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China;
| | | | - Thilo Pfau
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniel R. Martel
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
3
|
Bukhari SSUH, Parkes RSV. Assessing the impact of draught load pulling on welfare in equids. Front Vet Sci 2023; 10:1214015. [PMID: 37662986 PMCID: PMC10469728 DOI: 10.3389/fvets.2023.1214015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
About 112 million working equids are the source of income for 600 million people globally. Many equids are used for pulling loads (up to 15,000 kg per day) to transport goods. Most of them are associated with brick kilns, mining, and agriculture industries in developing countries. They may suffer from welfare issues such as overloading, being beaten, and being forced to work for long periods. These issues may occur due to a poor understanding of load-pulling equids. Understanding their capabilities and the elements that influence them is critical for efficient performance and welfare. The measurement of stride characteristics and gait kinematics can reveal loading adaptations and help identify loading limitations. It is known that both loading and fatigue change the locomotor patterns of load-pulling horses. Heart rate is a stress quantifying metric and an important representative of the speed of work and draught force. Heart rate variability is a regularly used statistic to quantify a physiological response to stresses, but it has never been used for load-pulling equids. Changes in blood lactate, nitrogen, oxygen, and carbon dioxide contents are reliable biochemical indicators of the effects of load pulling. Changes in plasma cortisol levels reflect the intensity of exercise and stress levels in horses while pulling a load. However, eye blink rate is a cheap, simple, and immediate indicator of acute equine stress, and we suggest it may be used to aid in load-pulling equine welfare assessment. However, further research is needed for a standardized and evidence-based draught load pulling capacity of working horses, mules, and donkeys.
Collapse
Affiliation(s)
- Syed S. U. H. Bukhari
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rebecca S. V. Parkes
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Logan AA, Snyder AJ, Nielsen BD. Circle Diameter Impacts Stride Frequency and Forelimb Stance Duration at Various Gaits in Horses. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094232. [PMID: 37177435 PMCID: PMC10181099 DOI: 10.3390/s23094232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The effects of gait and diameter have been studied independently, but rarely together in equine circular exercise studies. This study aimed to determine the impact of diameter (10-m or 15-m) at various gaits (walk, trot, and canter) on stride frequency or forelimb stance duration. Nine mature horses were outfitted with Tekscan™ Hoof Sensors on their forelimbs during circular and straight-line exercise at various gaits on a clay and sand arena surface. Statistical analysis was performed in SAS 9.4 with fixed effects of exercise type, recording, leg, and breed (PROC GLIMMIX, p < 0.05 significance). At walk (p < 0.0001) and trot (p < 0.001), stride frequency was lower during circular exercise. Stride frequency was similar between forelimbs at all gaits. At walk (p < 0.001) and canter (p = 0.01), stance duration was greatest during 10-m circle exercise. At walk (p = 0.0007), trot (p < 0.001), and canter (p < 0.0001), the inside forelimb had longer stance duration than the outside forelimb. Differences between forelimb stance durations may support asymmetrical travel while horses exercise on a circle at the walk, trot, and canter. These results demonstrate diameter and gait are important factors when evaluating forelimb kinematics during circular exercise.
Collapse
Affiliation(s)
- Alyssa A Logan
- School of Agriculture, Middle Tennessee State University, 314 W. Thompson Ln., Murfreesboro, TN 37129, USA
| | - Alyson J Snyder
- School of Agriculture, Middle Tennessee State University, 314 W. Thompson Ln., Murfreesboro, TN 37129, USA
| | - Brian D Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Logan AA, Nielsen BD, Hiney KM, Robison CI, Manfredi JM, Buskirk DD, Popovich JM. The Impact of Circular Exercise Diameter on Bone and Joint Health of Juvenile Animals. Animals (Basel) 2022; 12:ani12111379. [PMID: 35681842 PMCID: PMC9179390 DOI: 10.3390/ani12111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Circular exercise is used in many equestrian disciplines and this study aimed to determine if circle diameter impacts juvenile animal forelimb bone and joint health. On day 0, 24 calves at 9 weeks of age were assigned the following exercise treatments: small circle (12 m clockwise), large circle (18-m clockwise), treadmill, or non-exercised control. Exercise was initiated at 1.1−1.5 m/s for 5 min/d and increased 5 min weekly until reaching 30 min/d. On day 49, synovial fluid was collected from multiple joints, cartilage was collected from the proximal surface of fused third and fourth metacarpi (MC III and IV), and forelimbs underwent computed tomography scans. A statistical analysis (PROC mixed) was performed in SAS 9.4. The inside leg of the small circle treatment had a larger MC III and IV dorsopalmar external diameter than the outside (p = 0.05). The medial proximal phalanx had a greater mediolateral diameter than the lateral proximal phalanx of the small circle treatment (p = 0.01). Fetlock nitric oxide was greater in the large circle and treadmill treatments (p < 0.0001). Cartilage glycosaminoglycan concentration was greater in the outside leg of the small circle exercise treatment than the inside leg (p = 0.03). Even at slow speeds, circular exercise diameter can impact joint and bone health, but faster speeds may have greater alterations.
Collapse
Affiliation(s)
- Alyssa A. Logan
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
- Correspondence:
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Kristina M. Hiney
- Department of Animal and Food Sciences, Oklahoma State University, 201J Animal Sciences, Stillwater, OK 74074, USA;
| | - Cara I. Robison
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Jane M. Manfredi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA;
| | - Daniel D. Buskirk
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - John M. Popovich
- Center for Neuromusculoskeletal Clinical Research, Department of Osteopathic Manipulative Medicine, Michigan State University, 965 Wilson Rd., B439, East Lansing, MI 48824, USA;
| |
Collapse
|
6
|
Multibody Computer Model of the Entire Equine Forelimb Simulates Forces Causing Catastrophic Fractures of the Carpus during a Traditional Race. Animals (Basel) 2022; 12:ani12060737. [PMID: 35327134 PMCID: PMC8944875 DOI: 10.3390/ani12060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Palios are traditional horseraces held in the main square of few Italian cities. Due to peculiar features of such circuits, adapted to the square architecture and thus characterized by tight curves and unconventional footing surface, horses involved are at particular risk of accidents. Prevention of catastrophic musculoskeletal injuries is a significant issue and matter of debate during these events. In particular, the negotiation of the curves in the city circuits is a significative concern. An experiment was set up to build a model of entire forelimb at the point of failure in the context of a turn comparable to that in a Palio circuit. The model was informed by live data and the output compared to post-mortem findings obtained from a horse that sustained a catastrophic fracture of the carpus during this competition. The objective of this study is to determine the magnitude and distribution of internal forces generated across the carpus under which the catastrophic injury has occurred and describe related post-mortem findings. Abstract A catastrophic fracture of the radial carpal bone experienced by a racehorse during a Palio race was analyzed. Computational modelling of the carpal joint at the point of failure informed by live data was generated using a multibody code for dynamics simulation. The circuit design in a turn, the speed of the animal and the surface characteristics were considered in the model. A macroscopic examination of the cartilage, micro-CT and histology were performed on the radio-carpal joint of the limb that sustained the fracture. The model predicted the points of contact forces generated at the level of the radio-carpal joint where the fracture occurred. Articular surfaces of the distal radius, together with the proximal articular surface of small carpal bones, exhibited diffuse wear lines, erosions of the articular cartilage and subchondral bone exposure. Even though the data in this study originated from a single fracture and further work will be required to validate this approach, this study highlights the potential correlation between elevated impact forces generated at the level of contact surfaces of the carpal joint during a turn and cartilage breakdown in the absence of pre-existing pathology. Computer modelling resulted in a useful tool to inversely calculate internal forces generated during specific conditions that cannot be reproduced in-vivo because of ethical concerns.
Collapse
|
7
|
Logan AA, Nielsen BD, Robison CI, Hallock DB, Manfredi JM, Hiney KM, Buskirk DD, Popovich JM. Impact of Gait and Diameter during Circular Exercise on Front Hoof Area, Vertical Force, and Pressure in Mature Horses. Animals (Basel) 2021; 11:3581. [PMID: 34944357 PMCID: PMC8697886 DOI: 10.3390/ani11123581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Circular exercise can be used at varying gaits and diameters to exercise horses, with repeated use anecdotally relating to increased lameness. This work sought to characterize mean area, mean vertical force, and mean pressure of the front hooves while exercising in a straight line at the walk and trot, and small (10-m diameter) and large circles (15-m diameter) at the walk, trot, and canter. Nine mature horses wore TekscanTM Hoof Sensors on their forelimbs adhered with a glue-on shoe. Statistical analysis was performed in SAS 9.4 with fixed effects of leg, gait, and exercise type (PROC GLIMMIX) and p < 0.05 as significant. For all exercise types, the walk had greater mean pressure than the trot (p < 0.01). At the walk, the straight line had greater mean area loaded than the large circle (p = 0.01), and both circle sizes had lower mean vertical force than the straight line (p = 0.003). During circular exercise at the canter, the outside front limb had greater mean area loaded than at the walk and trot (p = 0.001). This study found that gait is an important factor when evaluating circular exercise and should be considered when exercising horses to prevent injury.
Collapse
Affiliation(s)
- Alyssa A. Logan
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - Cara I. Robison
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | | | - Jane M. Manfredi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, 784 Wilson, Rd., East Lansing, MI 48824, USA;
| | - Kristina M. Hiney
- Department of Animal and Food Sciences, Oklahoma State University, 201J Animal Sciences, Stillwater, OK 74074, USA;
| | - Daniel D. Buskirk
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln., East Lansing, MI 48824, USA; (B.D.N.); (C.I.R.); (D.D.B.)
| | - John M. Popovich
- Department of Osteopathic Surgical Specialties, Michigan State University, 909 Fee Rd., B405, East Lansing, MI 48824, USA;
| |
Collapse
|