1
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
2
|
Da Silva Morais E, Grimaud GM, Warda A, Stanton C, Ross P. Genome plasticity shapes the ecology and evolution of Phocaeicola dorei and Phocaeicola vulgatus. Sci Rep 2024; 14:10109. [PMID: 38698002 PMCID: PMC11066082 DOI: 10.1038/s41598-024-59148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Emilene Da Silva Morais
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Ghjuvan Micaelu Grimaud
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Warda
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- Microbiology Department, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
3
|
Wesp V, Theißen G, Schuster S. Statistical analysis of synonymous and stop codons in pseudo-random and real sequences as a function of GC content. Sci Rep 2023; 13:22996. [PMID: 38151539 PMCID: PMC10752896 DOI: 10.1038/s41598-023-49626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Knowledge of the frequencies of synonymous triplets in protein-coding and non-coding DNA stretches can be used in gene finding. These frequencies depend on the GC content of the genome or parts of it. An example of interest is provided by stop codons. This is relevant for the definition of Open Reading Frames. A generic case is provided by pseudo-random sequences, especially when they code for complex proteins or when they are non-coding and not subject to selection pressure. Here, we calculate, for such sequences and for all 25 known genetic codes, the frequency of each amino acid and stop codon based on their set of codons and as a function of GC content. The amino acids can be classified into five groups according to the GC content where their expected frequency reaches its maximum. We determine the overall Shannon information based on groups of synonymous codons and show that it becomes maximum at a percent GC of 43.3% (for the standard code). This is in line with the observation that in most fungi, plants, and animals, this genomic parameter is in the range from 35 to 50%. By analysing natural sequences, we show that there is a clear bias for triplets corresponding to stop codons near the 5'- and 3'-splice sites in the introns of various clades.
Collapse
Affiliation(s)
- Valentin Wesp
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
4
|
Gralka M, Pollak S, Cordero OX. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nat Microbiol 2023; 8:1799-1808. [PMID: 37653010 DOI: 10.1038/s41564-023-01458-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Heterotrophic bacteria-bacteria that utilize organic carbon sources-are taxonomically and functionally diverse across environments. It is challenging to map metabolic interactions and niches within microbial communities due to the large number of metabolites that could serve as potential carbon and energy sources for heterotrophs. Whether their metabolic niches can be understood using general principles, such as a small number of simplified metabolic categories, is unclear. Here we perform high-throughput metabolic profiling of 186 marine heterotrophic bacterial strains cultured in media containing one of 135 carbon substrates to determine growth rates, lag times and yields. We show that, despite high variability at all levels of taxonomy, the catabolic niches of heterotrophic bacteria can be understood in terms of their preference for either glycolytic (sugars) or gluconeogenic (amino and organic acids) carbon sources. This preference is encoded by the total number of genes found in pathways that feed into the two modes of carbon utilization and can be predicted using a simple linear model based on gene counts. This allows for coarse-grained descriptions of microbial communities in terms of prevalent modes of carbon catabolism. The sugar-acid preference is also associated with genomic GC content and thus with the carbon-nitrogen requirements of their encoded proteome. Our work reveals how the evolution of bacterial genomes is structured by fundamental constraints rooted in metabolism.
Collapse
Affiliation(s)
- Matti Gralka
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Systems Biology Group, Amsterdam Institute for Life and Environment (A-LIFE) and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Shaul Pollak
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Brázda V, Dobrovolná M, Bohálová N, Mergny JL. G-quadruplexes in the evolution of hepatitis B virus. Nucleic Acids Res 2023; 51:7198-7204. [PMID: 37395407 PMCID: PMC10415126 DOI: 10.1093/nar/gkad556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the most dangerous human pathogenic viruses found in all corners of the world. Recent sequencing of ancient HBV viruses revealed that these viruses have accompanied humanity for several millenia. As G-quadruplexes are considered to be potential therapeutic targets in virology, we examined G-quadruplex-forming sequences (PQS) in modern and ancient HBV genomes. Our analyses showed the presence of PQS in all 232 tested HBV genomes, with a total number of 1258 motifs and an average frequency of 1.69 PQS per kbp. Notably, the PQS with the highest G4Hunter score in the reference genome is the most highly conserved. Interestingly, the density of PQS motifs is lower in ancient HBV genomes than in their modern counterparts (1.5 and 1.9/kb, respectively). This modern frequency of 1.90 is very close to the PQS frequency of the human genome (1.93) using identical parameters. This indicates that the PQS content in HBV increased over time to become closer to the PQS frequency in the human genome. No statistically significant differences were found between PQS densities in HBV lineages found in different continents. These results, which constitute the first paleogenomics analysis of G4 propensity, are in agreement with our hypothesis that, for viruses causing chronic infections, their PQS frequencies tend to converge evolutionarily with those of their hosts, as a kind of 'genetic camouflage' to both hijack host cell transcriptional regulatory systems and to avoid recognition as foreign material.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
6
|
De la Cruz-Rodríguez Y, Adrián-López J, Martínez-López J, Neri-Márquez BI, García-Pineda E, Alvarado-Gutiérrez A, Fraire-Velázquez S. Biosynthetic Gene Clusters in Sequenced Genomes of Four Contrasting Rhizobacteria in Phytopathogen Inhibition and Interaction with Capsicum annuum Roots. Microbiol Spectr 2023; 11:e0307222. [PMID: 37222590 PMCID: PMC10269915 DOI: 10.1128/spectrum.03072-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Through screening of rhizobacteria, species that effectively suppress phytopathogens and/or promote plant growth are found. Genome sequencing is a crucial step in obtaining a complete characterization of microorganisms for biotechnological applications. This study aimed to sequence the genomes of four rhizobacteria that differ in their inhibition of four root pathogens and in their interaction with chili pepper roots to identify the species and analyze differences in the biosynthetic gene clusters (BGCs) for antibiotic metabolites and to determine possible phenotype-genotype correlations. Results from sequencing and genome alignment identified two bacteria as Paenibacillus polymyxa, one as Kocuria polaris, and one that was previously sequenced as Bacillus velezensis. Analysis with antiSMASH and PRISM tools showed that B. velezensis 2A-2B, the strain with the best performance of referred characteristics, had 13 BGCs, including those related to surfactin, fengycin, and macrolactin, not shared with the other bacteria, whereas P. polymyxa 2A-2A and 3A-25AI, with up to 31 BGCs, showed lower pathogen inhibition and plant hostility; K. polaris showed the least antifungal capacity. P. polymyxa and B. velezensis had the highest number of BGCs for nonribosomal peptides and polyketides. In conclusion, the 13 BGCs in the genome of B. velezensis 2A-2B that were not present in the other bacteria could explain its effective antifungal capacity and could also contribute to its friendly interaction with chili pepper roots. The high number of other BGCs for nonribosomal peptides and polyketide shared by the four bacteria contributed much less to phenotypic differences. IMPORTANCE To advance the characterization of a microorganism as a biocontrol agent against phytopathogens, it is highly recommended to analyze the potential of the profile of secondary metabolites as antibiotics that it produces to counteract pathogens. Some specific metabolites have positive impacts in plants. By analyzing sequenced genomes with bioinformatic tools, such as antiSMASH and PRISM, outstanding bacterial strains with high potential to inhibit phytopathogens and/or promote plant growth can be quickly selected to confirm and expand our knowledge of BGCs of great value in phytopathology.
Collapse
Affiliation(s)
- Yumiko De la Cruz-Rodríguez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jesús Adrián-López
- Lab. MicroRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Jazmín Martínez-López
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Bibiana Itzel Neri-Márquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | | - Alejandro Alvarado-Gutiérrez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Lab. Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
7
|
Bohlin J. A simple stochastic model describing the evolution of genomic GC content in asexually reproducing organisms. Sci Rep 2022; 12:18569. [PMID: 36329129 PMCID: PMC9631610 DOI: 10.1038/s41598-022-21709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A genome's nucleotide composition can usually be summarized with (G)uanine + (C)ytosine (GC) or (A)denine + (T)hymine (AT) frequencies as GC% = 100% - AT%. Genomic AT/GC content has been linked to environment and selective processes in asexually reproducing organisms. A model is presented relating the evolution of genomic GC content over time to AT [Formula: see text] GC and GC [Formula: see text] AT mutation rates. By employing Itô calculus it is shown that if mutation rates are subject to random perturbations, that can vary over time, several implications follow. In particular, an extra Brownian motion term appears influencing genomic nucleotide variability; the greater the random perturbations the more genomic nucleotide variability. This can have several interpretations depending on the context. For instance, reducing the influence of the random perturbations on the AT/GC mutation rates and thus genomic nucleotide variability, to limit fitness decreasing and deleterious mutations, will likely suggest channeling of resources. On the other hand, increased genomic nucleotide diversity may be beneficial in variable environments. In asexually reproducing organisms, the Brownian motion term can be considered to be inversely reflective of the selective pressures an organism is subjected to at the molecular level. The presented model is a generalization of a previous model, limited to microbial symbionts, to all asexually reproducing, non-recombining organisms. Last, a connection between the presented model and the classical Luria-Delbrück mutation model is presented in an Itô calculus setting.
Collapse
Affiliation(s)
- Jon Bohlin
- grid.418193.60000 0001 1541 4204Division of Infection Control, Department of Methods Development and Analysis, Norwegian Institute of Public Health, Oslo, Norway ,grid.418193.60000 0001 1541 4204Centre for Fertility and Health, Norwegian Institute of Public Health, P.O. Box 4404, Lovisenberggata 8, 0403 Oslo, Norway
| |
Collapse
|
8
|
Genomes of Novel Myxococcota Reveal Severely Curtailed Machineries for Predation and Cellular Differentiation. Appl Environ Microbiol 2021; 87:e0170621. [PMID: 34524899 DOI: 10.1128/aem.01706-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota. Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota. The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth.
Collapse
|