1
|
Odinot E, Bisotto-Mignot A, Frezouls T, Bissaro B, Navarro D, Record E, Cadoret F, Doan A, Chevret D, Fine F, Lomascolo A. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus Neolentinus lepideus Natively Decarboxylates Biosourced Sinapic Acid into Canolol, a Bioactive Phenolic Compound. Bioengineering (Basel) 2024; 11:181. [PMID: 38391667 PMCID: PMC10886158 DOI: 10.3390/bioengineering11020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed meal (RSM) is a cheap, abundant and renewable feedstock, whose biorefinery is a current challenge for the sustainability of the oilseed sector. RSM is rich in sinapic acid (SA), a p-hydroxycinnamic acid that can be decarboxylated into canolol (2,6-dimethoxy-4-vinylphenol), a valuable bioactive compound. Microbial phenolic acid decarboxylases (PADs), mainly described for the non-oxidative decarboxylation of ferulic and p-coumaric acids, remain very poorly documented to date, for SA decarboxylation. The species Neolentinus lepideus has previously been shown to biotransform SA into canolol in vivo, but the enzyme responsible for bioconversion of the acid has never been characterized. In this study, we purified and characterized a new PAD from the canolol-overproducing strain N. lepideus BRFM15. Proteomic analysis highlighted a sole PAD-type protein sequence in the intracellular proteome of the strain. The native enzyme (NlePAD) displayed an unusual outstanding activity for decarboxylating SA (Vmax of 600 U.mg-1, kcat of 6.3 s-1 and kcat/KM of 1.6 s-1.mM-1). We showed that NlePAD (a homodimer of 2 × 22 kDa) is fully active in a pH range of 5.5-7.5 and a temperature range of 30-55 °C, with optima of pH 6-6.5 and 37-45 °C, and is highly stable at 4 °C and pH 6-8. Relative ratios of specific activities on ferulic, sinapic, p-coumaric and caffeic acids, respectively, were 100:24.9:13.4:3.9. The enzyme demonstrated in vitro effectiveness as a biocatalyst for the synthesis of canolol in aqueous medium from commercial SA, with a molar yield of 92%. Then, we developed processes to biotransform naturally-occurring SA from RSM into canolol by combining the complementary potentialities of an Aspergillus niger feruloyl esterase type-A, which is able to release free SA from the raw meal by hydrolyzing its conjugated forms, and NlePAD, in aqueous medium and mild conditions. NlePAD decarboxylation of biobased SA led to an overall yield of 1.6-3.8 mg canolol per gram of initial meal. Besides being the first characterization of a fungal PAD able to decarboxylate SA, this report shows that NlePAD is very promising as new biotechnological tool to generate biobased vinylphenols of industrial interest (especially canolol) as valuable platform chemicals for health, nutrition, cosmetics and green chemistry.
Collapse
Affiliation(s)
- Elise Odinot
- OléoInnov, 19 Rue du Musée, F-13001 Marseille, France
| | - Alexandra Bisotto-Mignot
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Toinou Frezouls
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - David Navarro
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Frédéric Cadoret
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Annick Doan
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| | - Didier Chevret
- INRAE, UMR1319 MICALIS Institute, PAPPSO, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | - Frédéric Fine
- TERRES INOVIA, Parc Industriel, 11 Rue Monge, F-33600 Pessac, France
| | - Anne Lomascolo
- INRAE, Aix-Marseille Université, UMR1163 BBF Fungal Biodiversity and Biotechnology, 163 Avenue de Luminy, F-13009 Marseille, France
| |
Collapse
|
2
|
Lomascolo A, Odinot E, Villeneuve P, Lecomte J. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:173. [PMID: 37964324 PMCID: PMC10644543 DOI: 10.1186/s13068-023-02425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
p-Hydroxycinnamic acids, such as sinapic, ferulic, p-coumaric and caffeic acids, are among the most abundant phenolic compounds found in plant biomass and agro-industrial by-products (e.g. cereal brans, sugar-beet and coffee pulps, oilseed meals). These p-hydroxycinnamic acids, and their resulting decarboxylation products named vinylphenols (canolol, 4-vinylguaiacol, 4-vinylphenol, 4-vinylcatechol), are bioactive molecules with many properties including antioxidant, anti-inflammatory and antimicrobial activities, and potential applications in food, cosmetic or pharmaceutical industries. They were also shown to be suitable precursors of new sustainable polymers and biobased substitutes for fine chemicals such as bisphenol A diglycidyl ethers. Non-oxidative microbial decarboxylation of p-hydroxycinnamic acids into vinylphenols involves cofactor-free and metal-independent phenolic acid decarboxylases (EC 4.1.1 carboxyl lyase family). Historically purified from bacteria (Bacillus, Lactobacillus, Pseudomonas, Enterobacter genera) and some yeasts (e.g. Brettanomyces or Candida), these enzymes were described for the decarboxylation of ferulic and p-coumaric acids into 4-vinylguaiacol and 4-vinylphenol, respectively. The catalytic mechanism comprised a first step involving p-hydroxycinnamic acid conversion into a semi-quinone that then decarboxylated spontaneously into the corresponding vinyl compound, in a second step. Bioconversion processes for synthesizing 4-vinylguaiacol and 4-vinylphenol by microbial decarboxylation of ferulic and p-coumaric acids historically attracted the most research using bacterial recombinant phenolic acid decarboxylases (especially Bacillus enzymes) and the processes developed to date included mono- or biphasic systems, and the use of free- or immobilized cells. More recently, filamentous fungi of the Neolentinus lepideus species were shown to natively produce a more versatile phenolic acid decarboxylase with high activity on sinapic acid in addition to the others p-hydroxycinnamic acids, opening the way to the production of canolol by biotechnological processes applied to rapeseed meal. Few studies have described the further microbial/enzymatic bioconversion of these vinylphenols into valuable compounds: (i) synthesis of flavours such as vanillin, 4-ethylguaiacol and 4-ethylphenol from 4-vinylguaiacol and 4-vinylphenol, (ii) laccase-mediated polymer synthesis from canolol, 4-vinylguaiacol and 4-vinylphenol.
Collapse
Affiliation(s)
- Anne Lomascolo
- Aix Marseille Univ., INRAE, UMR1163 BBF Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France.
| | - Elise Odinot
- OléoInnov, 19 rue du Musée, 13001, Marseille, France
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, 34398, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
3
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
4
|
Alternative Routes for the Production of Natural 4-Vinylguaiacol from Sugar Beet Fiber Using Basidiomycetous Enzymes. Catalysts 2021. [DOI: 10.3390/catal11050631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traditional smoking generates not only the impact flavor compound 4-vinylguaiacol, but concurrently many unwanted and potent toxic compounds such as polycyclic aromatic hydrocarbons. Enzyme technology provides a solution without any side-product formation. A feruloyl esterase from Rhizoctonia solani (RspCAE) liberated ferulic acid from low-priced sugar beet fiber. Decarboxylation of ferulic acid to 4-vinylguaiacol was achieved by a second enzyme from Schizophyllum commune (ScoFAD). Both enzymes were covalently immobilized on agarose to enable reusability in a fixed-bed approach. The two enzyme cascades showed high conversion rates with yields of 0.8 and 0.95, respectively, and retained activity for nearly 80 h of continuous operation. The overall productivity of the model process with bed volumes of 300 µL and a substrate flow rate of 0.25 mL min−1 was 3.98 mg 4-vinylguaiacol per hour. A cold online solid phase extraction using XAD4 was integrated into the bioprocess and provided high recovery rates during multiple elution steps. Attempting to facilitate the bioprocess, a fused gene coding for the two enzymes and a set of different linker lengths and properties was constructed and introduced into Komagataella phaffii. Longer and rigid linkers resulted in higher activity of the fusion protein with a maximum of 67 U L−1.
Collapse
|
5
|
Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Med Microbiol Immunol 2021; 210:165-171. [PMID: 33856557 PMCID: PMC8047582 DOI: 10.1007/s00430-021-00706-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 11/09/2022]
Abstract
Several rapid antigen tests (RATs) for the detection of SARS-CoV-2 were evaluated recently. However, reliable performance data for laboratory-based, high-throughput antigen tests are lacking. Therefore and in response to a short-term shortage of PCR reagents, we evaluated DiaSorin's LIAISON SARS-CoV-2 antigen test in comparison to RT-qPCR, and concerning the application of screening non-COVID-19 patients on hospital admission. Applying the manufacturer-recommended cut-off of 200 arbitrary units (AU/mL) the specificity of the LIAISON Test was 100%, the overall analytical sensitivity 40.2%. Lowering the cut-off to 100 AU/mL increased the sensitivity to 49.7% and decreased the specificity to 98.3%. Confining the analysis to samples with an RT-qPCR result < 25 Ct resulted in a sensitivity of 91.2%. The quality of the LIAISON test is very similar to that of good RATs described in the literature with the advantage of high throughput and the disadvantage of relatively long analysis time. It passes the WHO quality criteria for rapid antigen tests and is characterized by particularly high specificity. The LIAISON test can therefore be used for the same applications as recommended for RATs by the WHO. Due to limited sensitivity, the LIAISON test should only be used for screening, if PCR-based assays are not available.
Collapse
|