Cattle transport network predicts endemic and epidemic foot-and-mouth disease risk on farms in Turkey.
PLoS Comput Biol 2022;
18:e1010354. [PMID:
35984841 PMCID:
PMC9432692 DOI:
10.1371/journal.pcbi.1010354]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2022] [Accepted: 07/03/2022] [Indexed: 11/19/2022] Open
Abstract
The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.
Contact network epidemiology has been extensively used in the context of infectious diseases, primarily focusing on epidemic diseases. In this paper we use detailed recorded data about cattle exchange between farms in Turkey from 2007 to 2012, to build, analyze and characterize the directed-weighted complex network of shipments of cattle. Additionally, using outbreaks data about recorded cases of foot-and-mouth disease (FMD) in Turkey, we assess the correlation between the “farm’s” position in the network (importance) and the risk of being infected with FMD, which has been endemic in Turkey for a long time. We find some network measures that are more likely to identify high-risk and low-risk farms (in-degree and in-coreness, respectively) when proposing strategies for surveillance or containment of an infectious disease.
Collapse