1
|
Khamrai A, Paul S, Rudramurthy SM, Ghosh AK. Carbon substrates promotes stress resistance and drug tolerance in clinical isolates of Candida tropicalis. Arch Microbiol 2024; 206:270. [PMID: 38767668 DOI: 10.1007/s00203-024-04000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.
Collapse
Affiliation(s)
- Arpita Khamrai
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Öztürk S, Çam K, Babuccu G, Onem UA, Aydın S, Kuşkucu M, Doğan Ö. Rapid Tetra-Primer Amplification Refractory Mutation System-Polymerase Chain Reaction Protocol for Detection of Y132F Mutation in Fluconazole Resistant Candida parapsilosis. Microb Drug Resist 2024; 30:210-213. [PMID: 38346314 DOI: 10.1089/mdr.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
There is an emerging fluconazole resistance in Candida parapsilosis in recent years. The leading mechanism causing azole resistance in C. parapsilosis is the Y132F codon alteration in the ERG11 gene which encodes the target enzyme of azole drugs. In this study, we evaluated the sensitivity, compatibility, and specificity of a novel tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS-PCR) method for rapid detection of the Y132F mutation in fluconazole nonsusceptible C. parapsilosis. Antifungal susceptibility tests for detection of fluconazole resistance were performed by broth microdilution according to the CLSI guidelines. All susceptible and nonsusceptible C. parapsilosis isolates were analyzed for ERG11 mutations with Sanger sequencing. T-ARMS-PCR was fully concordant with the Sanger sequencing (100% of sensitivity and specificity) for detection of Y132F mutations. T-ARMS-PCR method could be a rapid, simple, accurate, and economical assay in the early detection of the most common cause of fluconazole resistance in C. parapsilosis isolates. In routine laboratories with high C. parapsilosis isolation rates, performing the T-ARMS-PCR for early detection of the most common reason of fluconazole resistance in C. parapsilosis, could be a life-saving approach for directing antifungal therapy before obtaining the definitive antifungal susceptibility tests results.
Collapse
Affiliation(s)
- Sevgi Öztürk
- Koc University Is Bank Center for Infectious Disease (KUISCID), Istanbul, Turkey
- Koç University, Graduate School of Health Science, Medical Microbiology Department, Istanbul, Turkey
| | - Kübra Çam
- Koc University Is Bank Center for Infectious Disease (KUISCID), Istanbul, Turkey
- Koç University, Graduate School of Health Science, Medical Microbiology Department, Istanbul, Turkey
| | - Gizem Babuccu
- Koc University Is Bank Center for Infectious Disease (KUISCID), Istanbul, Turkey
- Koç University, Graduate School of Health Science, Medical Microbiology Department, Istanbul, Turkey
| | | | - Serhat Aydın
- School of Medicine, Koc University, Istanbul, Turkey
| | - Mert Kuşkucu
- Koc University Is Bank Center for Infectious Disease (KUISCID), Istanbul, Turkey
- Microbiology Department, Cerrahpasa Faculty of Medicine, Cerrahpasa University, Istanbul, Turkey
| | - Özlem Doğan
- Koc University Is Bank Center for Infectious Disease (KUISCID), Istanbul, Turkey
- Microbiology Department, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
3
|
Habibi A, Bayat M, Omidi B, Ezabadi A, Mortazavi P. Synthesis of new imidazole-based ionic liquids with antifungal activity against Candida albicans. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:811-820. [PMID: 38156299 PMCID: PMC10751616 DOI: 10.18502/ijm.v15i6.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Background and Objectives Candida albicans cause a problematic condition in immunocompromised patients that could not be treated quickly due to the resistant behavior of microorganisms. This study aimed to investigate the effect of a novel ionic liquid (IL) as a new drug on C. albicans strains. Materials and Methods Seven newly binary ionic liquids mixtures were synthesized, and among them, ([prollinium chloride] [1-methylimidazolium 3-sulfonate] ([pro-HCl][MImS]) was selected and characterized by 1HNMR, 13C NMR, and FT-IR methods. Samples from patients (n=50) with candidiasis were collected and identified through culture media. ERG11 gene overexpression was related to resistance against azole-bearing drugs. The antibiogram, well diffusion assay, MICs, and MFCs tests were operated. PCR and Real-time evaluated the expression of the ERG11 gene, and the rate of cell death was detected using Flow Cytometry. Results Our data manifested that this novel IL (Ionic Liquid) can inhibit C. albican's growth, reduce the expression of ERG11 and increase dead cells. Conclusion The newly synthesized IL had an inhibiting effect on the growth of the C. albicans strains and may be used as an alternative candidate for novel drug design.
Collapse
Affiliation(s)
- Amira Habibi
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansoura Bayat
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behinb Omidi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ezabadi
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pejmana Mortazavi
- Department of Pathobiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Morovati H, Badali H, Abastabar M, Pakshir K, Zomorodian K, Ahmadi B, Naeimi B, Khodavaisy S, Nami S, Eghtedarnejad E, Khodadadi H. Development of a high-resolution melt-based assay to rapidly detect the azole-resistant Candida auris isolates. Curr Med Mycol 2023; 9:23-32. [PMID: 38361960 PMCID: PMC10864743 DOI: 10.22034/cmm.2023.345114.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 02/17/2024] Open
Abstract
Background and Purpose Candida auris is a multidrug-resistant yeast that rapidly spreads, making it the leading Candidate for the next pandemic. One main leading cause of emerging resistant C. auris isolates is nonsynonymous mutations. This study aimed to detect the Y132F mutation, one of the most important azole resistance-associated mutations in the ERG-11 gene of C. auris, by developing a reliable high-resolution melt (HRM)-based method. Materials and Methods Five C. auris isolates from Iran, plus three control isolates from other Clades were used in the study. The antifungal susceptibility testing through micro broth dilution was performed to recheck their susceptibility to three azole antifungals, including fluconazole, itraconazole, and voriconazole. Moreover, the polymerase chain reaction (PCR) sequencing of the ERG-11 gene was performed. Following the bioinformatic analysis and HRM-specific primer design, an HRM-based assay was developed and evaluated to detect ERG-11 mutations. Results The minimum inhibitory concentrations of fluconazole among Iranian C. auris isolates ranged from 8 to 64 μg/mL. The PCR-sequencing of the ERG-11 gene and bioinformatic analyses revealed the mutation of Y132F, a substitution consequence of A to T on codon 395 in one fluconazole-resistant isolate (IFRC4050). The developed HRM assay successfully differentiated the targeted single nucleotide polymorphism between mutant and wild types (temperature [Tm]: 81.79 ℃ - cycle threshold [CT]: 20.06 for suspected isolate). For both mutant and non-mutant isolates, the mean Tm range was 81.79-82.39 °C and the mean CT value was 20.06-22.93. These results were completely in accordance with the findings of DNA sequencing. Conclusion The fast-track HRM-based method successfully detected one of the most common mechanisms of resistance in the ERG-11 gene of C. auris within 3 h. Finally, the development of more panels of HRM assays for the detection of all azole resistance mutations in C. auris ERG-11 is recommended to expand the scope of the field and facilitate the elaboration of rapid and accurate methods of antifungal resistance assessment.
Collapse
Affiliation(s)
- Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahram Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behrouz Naeimi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Eghtedarnejad
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Paul S, Shaw D, Joshi H, Singh S, Chakrabarti A, Rudramurthy SM, Ghosh AK. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PLoS One 2022; 17:e0269721. [PMID: 35819969 PMCID: PMC9275685 DOI: 10.1371/journal.pone.0269721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
This study was designed to understand the molecular mechanisms of azole resistance in Candida tropicalis using genetic and bioinformatics approaches. Thirty-two azole-resistant and 10 azole-susceptible (S) clinical isolates of C. tropicalis were subjected to mutation analysis of the azole target genes including ERG11. Inducible expression analysis of 17 other genes potentially associated with azole resistance was also evaluated. Homology modeling and molecular docking analysis were performed to study the effect of amino acid alterations in mediating azole resistance. Of the 32 resistant isolates, 12 (37.5%) showed A395T and C461T mutations in the ERG11 gene. The mean overexpression of CDR1, CDR3, TAC1, ERG1, ERG2, ERG3, ERG11, UPC2, and MKC1 in resistant isolates without mutation (R-WTM) was significantly higher (p<0.05) than those with mutation (R-WM) and the sensitive isolates (3.2-11 vs. 0.2-2.5 and 0.3-2.2 folds, respectively). Although the R-WTM and R-WM had higher (p<0.05) CDR2 and MRR1 expression compared to S isolates, noticeable variation was not seen among the other genes. Protein homology modelling and molecular docking revealed that the mutations in the ERG11 gene were responsible for structural alteration and low binding efficiency between ERG11p and ligands. Isolates with ERG11 mutations also presented A220C in ERG1 and together T503C, G751A mutations in UPC2. Nonsynonymous mutations in the ERG11 gene and coordinated overexpression of various genes including different transporters, ergosterol biosynthesis pathway, transcription factors, and stress-responsive genes are associated with azole resistance in clinical isolates of C. tropicalis.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dipika Shaw
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anup K. Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
8
|
Atim PB, Meya DB, Gerlach ES, Muhanguzi D, Male A, Kanamwanji B, Nielsen K. Lack of Association between Fluconazole Susceptibility and ERG11 Nucleotide Polymorphisms in Cryptococcus neoformans Clinical Isolates from Uganda. J Fungi (Basel) 2022; 8:508. [PMID: 35628763 PMCID: PMC9145384 DOI: 10.3390/jof8050508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Fluconazole is the drug of choice for cryptococcal meningitis (CM) monoprophylaxis in resource-limited settings such as Uganda. Emerging fluconazole resistance linked to mutations in the Cryptococcus neoformansERG11 gene (CYP51) has been observed in clinical isolates. Currently, the single nucleotide polymorphisms [SNPs] in the Cryptococcus spp. ERG11 gene that could be responsible for fluconazole resistance are poorly characterized within Ugandan C. neoformans clinical isolates. If available, this information would be useful in the management of cryptococcosis among HIV patients. This cross-sectional study investigates the SNPs present in the coding region of the C. neoformansERG11 gene to determine the relationship between the SNPs identified and fluconazole susceptibility of the clinical isolates. 310 C. neoformans isolates recovered from the Cerebrospinal Fluid (CSF) of patients with HIV and cryptococcal meningitis were examined. The fluconazole half-maximal inhibitory concentrations (IC50 range: 0.25−32 μg/mL) was determined using the microbroth dilution method. A total of 56.1% of the isolates had low IC50 values of <8 μg/mL while 43.9% had high IC50 values ≥ 8 μg/mL. We amplified and sequenced 600 bp of the ERG11 coding sequence from 40 of the clinical isolates. Novel synonymous and 2 missense mutations, S460T and A457V, were identified in the ERG11 gene. The identified SNPs were not associated with differences in fluconazole IC50 values in vitro (p = 0.179).
Collapse
Affiliation(s)
| | - David B. Meya
- Infectious Diseases Institute, Kampala P.O. Box 22418, Uganda;
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| | - Elliot S. Gerlach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| | - Dennis Muhanguzi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Allan Male
- International Centre for Tropical Agriculture (CIAT)—Uganda, Kampala P.O. Box 6247, Uganda;
| | - Benedict Kanamwanji
- National Microbiology Reference Laboratory (NMRL), Kampala P.O. Box 7272, Uganda;
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; (E.S.G.); (K.N.)
| |
Collapse
|
9
|
Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. MATERIALS 2021; 14:ma14102654. [PMID: 34070218 PMCID: PMC8158721 DOI: 10.3390/ma14102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Institute of Health, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall Campus, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
10
|
White PL, Price JS, Cordey A, Backx M. Molecular Diagnosis of Yeast Infections. CURRENT FUNGAL INFECTION REPORTS 2021; 15:67-80. [PMID: 34178207 PMCID: PMC8212580 DOI: 10.1007/s12281-021-00421-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The use of molecular tests to aid the diagnosis of invasive yeast infection, in particular invasive candidosis, has been described for over two decades, yet widespread application is limited, and diagnosis remains heavily dependent on classical microbiology. This article will review developments from the past decade in attempt to build on existing knowledge. It will highlight clinical performance and limitations while reviewing developments on recognized procedures; it will also provide insight into novel approaches incorporated in response to clinical demand (e.g. C. auris and antifungal resistance) or technological advances (e.g. next-generation sequencing). RECENT FINDINGS Limited methodological standardization and, until recently, unavailability of commercial options have hindered the integration of molecular diagnostics for yeasts. The development of certain, novel commercial methods has received considerable evaluation allowing a greater understanding of individual assay performance, but widespread multicentre evaluation of most commercial kits is lacking. The detection of emerging pathogens (e.g. C. auris) has been enhanced by the development of molecular tests. Molecular methods are providing a better understanding of the mycobiome, mechanisms of resistance and epidemiology/phylogeny. SUMMARY Despite over two decades of use, the incorporation of molecular methods to enhance the diagnosis of yeast infections remains limited to certain specialist centres. While the development of commercial tests will provide stimulus for broader application, further validation and reduced costs are required. Over the same period of time, Aspergillus PCR has become more widely accepted driven by international efforts to standardize methodology; it is critical that yeast PCR follows suit. Next-generation sequencing will provide significant information on the mycobiome, antifungal resistance mechanism and even broad-range detection directly from the specimen, which may be critical for the molecular detection of yeasts other than Candida species, which is currently limited.
Collapse
Affiliation(s)
- P. Lewis White
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Jessica S. Price
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Alan Cordey
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| | - Matthijs Backx
- grid.241103.50000 0001 0169 7725Mycology Reference Laboratory, Public Health Wales, Microbiology Cardiff, UHW, Heath Park, Cardiff, CF14 4XW UK
| |
Collapse
|