1
|
Zhao Z, Zhao L, Kong C, Zhou J, Zhou F. A review of biophysical strategies to investigate protein-ligand binding: What have we employed? Int J Biol Macromol 2024; 276:133973. [PMID: 39032877 DOI: 10.1016/j.ijbiomac.2024.133973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The protein-ligand binding frequently occurs in living organisms and plays a crucial role in the execution of the functions of proteins and drugs. It is also an indispensable part of drug discovery and screening. While the methods for investigating protein-ligand binding are diverse, each has its own objectives, strengths, and limitations, which all influence the choice of method. Many studies concentrate on one or a few specific methods, suggesting that comprehensive summaries are lacking. Therefore in this review, these methods are comprehensively summarized and are discussed in detail: prediction and simulation methods, thermal and thermodynamic methods, spectroscopic methods, methods of determining three-dimensional structures of the complex, mass spectrometry-based methods and others. It is also important to integrate these methods based on the specific objectives of the research. With the aim of advancing pharmaceutical research, this review seeks to deepen the understanding of the protein-ligand binding process.
Collapse
Affiliation(s)
- Zhen Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Chenxi Kong
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Tsinghua East Road, Beijing 100083, China.
| |
Collapse
|
2
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
3
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Malakoutikhah M, Mahran R, Gooran N, Masoumi A, Lundell K, Liljeblad A, Guiley K, Dai S, Zheng Q, Zhu L, Shokat KM, Kopra K, Härmä H. Nanomolar Protein Thermal Profiling with Modified Cyanine Dyes. Anal Chem 2023; 95:18344-18351. [PMID: 38060502 PMCID: PMC10733900 DOI: 10.1021/acs.analchem.3c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Protein properties and interactions have been widely investigated by using external labels. However, the micromolar sensitivity of the current dyes limits their applicability due to the high material consumption and assay cost. In response to this challenge, we synthesized a series of cyanine5 (Cy5) dye-based quencher molecules to develop an external dye technique to probe proteins at the nanomolar protein level in a high-throughput one-step assay format. Several families of Cy5 dye-based quenchers with ring and/or side-chain modifications were designed and synthesized by introducing organic small molecules or peptides. Our results showed that steric hindrance and electrostatic interactions are more important than hydrophobicity in the interaction between the luminescent negatively charged europium-chelate-labeled peptide (Eu-probe) and the quencher molecules. The presence of substituents on the quencher indolenine rings reduces their quenching property, whereas the increased positive charge on the indolenine side chain improved the interaction between the quenchers and the luminescent compound. The designed quencher structures entirely altered the dynamics of the Eu-probe (protein-probe) for studying protein stability and interactions, as we were able to reduce the quencher concentration 100-fold. Moreover, the new quencher molecules allowed us to conduct the experiments using neutral buffer conditions, known as the peptide-probe assay. These improvements enabled us to apply the method in a one-step format for nanomolar protein-ligand interaction and protein profiling studies instead of the previously developed two-step protocol. These improvements provide a faster and simpler method with lower material consumption.
Collapse
Affiliation(s)
| | - Randa Mahran
- Department
of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Negin Gooran
- Department
of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Ahmadreza Masoumi
- Department
of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Katri Lundell
- Laboratory
of Synthetic Drug Chemistry, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arto Liljeblad
- Laboratory
of Synthetic Drug Chemistry, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Keelan Guiley
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
- Current
address: Rezo Therapeutics, Inc., San Francisco, California 94158, United States
| | - Shizhong Dai
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
- Current
address: Department of Genetics, Stanford
University, Stanford, California 94305, United States
| | - Qinheng Zheng
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Lawrence Zhu
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kevan M. Shokat
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kari Kopra
- Department
of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Harri Härmä
- Department
of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
5
|
Monsen RC, Maguire JM, DeLeeuw LW, Chaires JB, Trent JO. Drug discovery of small molecules targeting the higher-order hTERT promoter G-quadruplex. PLoS One 2022; 17:e0270165. [PMID: 35709230 PMCID: PMC9202945 DOI: 10.1371/journal.pone.0270165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.
Collapse
Affiliation(s)
- Robert C. Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jon M. Maguire
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Lynn W. DeLeeuw
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Jonathan B. Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| | - John O. Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail: (JBC); (JOT)
| |
Collapse
|
6
|
Gedgaudas M, Baronas D, Kazlauskas E, Petrauskas V, Matulis D. Thermott: a comprehensive online tool for protein–ligand binding constant determination. Drug Discov Today 2022; 27:2076-2079. [DOI: 10.1016/j.drudis.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
|
7
|
Shou JW, Li XX, Tang YS, Lim-Ho Kong B, Wu HY, Xiao MJ, Cheung CK, Shaw PC. Novel mechanistic insight on the neuroprotective effect of berberine: The role of PPARδ for antioxidant action. Free Radic Biol Med 2022; 181:62-71. [PMID: 35093536 DOI: 10.1016/j.freeradbiomed.2022.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
Cerebral ischemic stroke ranks the second leading cause of death and the third leading cause of disability in lifetime all around the world, urgently necessitating effective therapeutic interventions. Reactive oxygen species (ROS) have been implicated in stroke pathogenesis and peroxisome proliferator-activated receptors (PPARs) are prominent targets for ROS management. Although recent research has shown antioxidant effect of berberine (BBR), little is known regarding its effect upon ROS-PPARs signaling in stroke. The aim of this study is to explore whether BBR could target on ROS-PPARs pathway to ameliorate middle cerebral artery occlusion (MCAO)-induced stroke. Herein, we report that BBR is able to scavenge ROS in oxidation-damaged C17.2 neural stem cells and stroked mice. PPARδ, rather than PPARα or PPARγ, is involved in the anti-ROS effect of BBR, as evidenced by the siRNA transfection and specific antagonist treatment data. Further, we have found BBR could upregulate NF-E2 related factor-1/2 (NRF1/2) and NAD(P)H:quinone oxidoreductase 1 (NQO1) following a PPARδ-dependent manner. Mechanistic study has revealed that BBR acts as a potent ligand (Kd = 290 ± 92 nM) to activate PPARδ and initiates the transcriptional regulation functions, thus promoting the expression of PPARδ, NRF1, NRF2 and NQO1. Collectively, our results indicate that BBR confers neuroprotective effects by activating PPARδ to scavenge ROS, providing a novel mechanistic insight for the antioxidant action of BBR.
Collapse
Affiliation(s)
- Jia-Wen Shou
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Xiao Li
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobby Lim-Ho Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Wu
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Meng-Jie Xiao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kai Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|