1
|
Smith EH, Van de Weyer Y, Patterson S. Rabies and the Arctic Fox (Vulpes lagopus): A Review. J Wildl Dis 2024; 60:572-583. [PMID: 38742383 DOI: 10.7589/jwd-d-23-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 05/16/2024]
Abstract
The Arctic fox (Vulpes lagopus) is the primary infection reservoir of Arctic rabies, the dynamics of which are poorly understood and subject to significant spatiotemporal variation. Although rabies presence has been documented in the region since the mid-19th century, there is currently no evidence of rabies impacting Arctic fox population size. Under the influence of climate change in a rapidly evolving Arctic ecosystem, alterations in transmission dynamics are predicted, with implications for this species. Concurrently, the World Health Organization leads the United Against Rabies collective in the aim of elimination of dog-mediated rabies by 2030, and although efforts have justifiably been directed to tropical regions, elimination will require a good understanding of rabies in the Arctic. Therefore, this review aimed to provide an overview of current Arctic rabies understanding, while identifying the key knowledge gaps. The review covered spatiotemporal trends in rabies populations, population dynamics of the host species, and current theories about Arctic rabies persistence. It is still unclear how Arctic rabies can persist under low host densities, which has led to several hypotheses in recent years. Creation of high animal density "hotspots" caused by heterogenic fox distribution and multispecies congregations in response to food availability, extensive Arctic fox migration patterns, and the potential evolution to a less lethal variant of rabies may all be part of the explanation. Evidence for these theories by using recent genetic and modeling studies was evaluated within the review. There is currently insufficient evidence about the efficacy and feasibility of vaccines against Arctic rabies. Key knowledge gaps need addressing to enable future control campaigns.
Collapse
Affiliation(s)
- Elysé H Smith
- Wildlife Health, Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
- The Zoological Society of London, Wildlife Health Services, Regent's Park, London NW1 4RY, UK
- Marwell Wildlife, Thompson's Lane, Colden Common, Winchester SO21 1JH, UK
- These authors contributed equally to this study
| | - Yannick Van de Weyer
- Wildlife Health, Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
- The Zoological Society of London, Wildlife Health Services, Regent's Park, London NW1 4RY, UK
- RSPCA Stapeley Grange Wildlife Centre, London Road, Nantwich CW5 7JW, UK
- These authors contributed equally to this study
| | - Stuart Patterson
- Wildlife Health, Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
2
|
Warret Rodrigues C, Roth JD. Coexistence of two sympatric predators in a transitional ecosystem under constraining environmental conditions: a perspective from space and habitat use. MOVEMENT ECOLOGY 2023; 11:60. [PMID: 37784160 PMCID: PMC10544556 DOI: 10.1186/s40462-023-00421-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Range expansion of species, a major consequence of climate changes, may alter communities substantially due to competition between expanding and native species. METHODS We first quantified size differences between an expanding habitat generalist, the red fox (Vulpes vulpes), and a circumpolar habitat specialist, the Arctic foxes (Vulpes lagopus), at the edge of the Arctic, where climate-related changes occur rapidly, to predict the likelihood of the larger competitor escalating interference to intraguild killing. We then used satellite telemetry to evaluate competition in a heterogeneous landscape by examining space use early during the foxes' reproductive period, when resource scarcity, increased-food requirements and spatial constraints likely exacerbate the potential for interference. We used time-LoCoH to quantify space and habitat use, and Minta's index to quantify spatio-temporal interactions between neighbors. RESULTS Our morphometric comparison involving 236 foxes found that the potential for escalated interference between these species was high due to intermediate size difference. However, our results from 17 collared foxes suggested that expanding and native competitors may coexist when expanding species occur at low densities. Low home-range overlap between neighbors suggested territoriality and substantial exploitation competition for space. No obvious differential use of areas shared by heterospecific neighbors suggested low interference. If anything, intraspecific competition between red foxes may be stronger than interspecific competition. Red and Arctic foxes used habitat differentially, with near-exclusive use of forest patches by red foxes and marine habitats by Arctic foxes. CONCLUSION Heterogeneous landscapes may relax interspecific competition between expanding and native species, allowing exclusive use of some resources. Furthermore, the scarcity of habitats favored by expanding species may emphasize intraspecific competition between newcomers over interspecific competition, thus creating the potential for self-limitation of expanding populations. Dominant expanding competitors may benefit from interference, but usually lack adaptations to abiotic conditions at their expansion front, favoring rear-edge subordinate species in exploitation competition. However, due to ongoing climate change, systems are usually not at equilibrium. A spread of habitats and resources favorable to expanding species may promote higher densities of antagonistically dominant newcomers, which may lead to extirpation of native species.
Collapse
Affiliation(s)
- Chloé Warret Rodrigues
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| | - James D Roth
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
3
|
Talbot B, Alanazi TJ, Albert V, Bordeleau É, Bouchard É, Leighton PA, Marshall HD, Rondeau-Geoffrion D, Simon A, Massé A. Low levels of genetic differentiation and structure in red fox populations in Eastern Canada and implications for Arctic fox rabies propagation potential. PLoS One 2023; 18:e0286784. [PMID: 37279210 DOI: 10.1371/journal.pone.0286784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Rabies is a lethal zoonosis present in most parts of the world which can be transmitted to humans through the bite from an infected mammalian reservoir host. The Arctic rabies virus variant (ARVV) persists mainly in populations of Arctic foxes (Vulpes lagopus), and to a lesser extent in red fox populations (Vulpes vulpes). Red foxes are thought to be responsible for sporadic southward movement waves of the ARVV outside the enzootic area of northern Canada. In this study, we wanted to investigate whether red foxes displayed notable levels of genetic structure across the Quebec-Labrador Peninsula, which includes portions of the provinces of Quebec and Newfoundland-Labrador in Canada, and is a region with a history of southward ARVV movement waves. We combined two datasets that were collected and genotyped using different protocols, totalling 675 red fox individuals across the whole region and genotyped across 13 microsatellite markers. We found two genetic clusters across the region, reflecting a latitudinal gradient, and characterized by low genetic differentiation. We also observed weak but significant isolation by distance, which seems to be marginally more important for females than for males. These findings suggest a general lack of resistance to movement in red fox populations across the Quebec-Labrador Peninsula, regardless of sex. Implications of these findings include additional support for the hypothesis of long-distance southward ARVV propagation through its red fox reservoir host.
Collapse
Affiliation(s)
- Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Thaneah J Alanazi
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vicky Albert
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bordeleau
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| | - Émilie Bouchard
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrick A Leighton
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Audrey Simon
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Ariane Massé
- Ministère des Forêts, de la Faune et des Parcs, Québec, QC, Canada
| |
Collapse
|
4
|
Bandyopadhyay M, Biswas S, Dasgupta T, Krishnamurthy R. Patterns of coexistence between two mesocarnivores in presence of anthropogenic disturbances in Western Himalaya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:397. [PMID: 36781547 DOI: 10.1007/s10661-023-11003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Species' coexistence depends on species-specific resource utilization in a given habitat. Human disturbances in this context can constrain the realized niche by altering their community dynamics. In this study, we considered Western Himalaya as a case study to test the hypothesis that human disturbances influence mesocarnivore coexistence patterns. We regarded red fox and leopard cat as the focal species and assessed the coexistence patterns in low and high human disturbance areas in three dimensions: spatial, temporal, and dietary habit. We used camera trap detections and mitochondrial DNA-based species identification of fecal samples. We used generalized linear mixed-effect modelling (GLMM), activity overlap, Levin's niche breadth, and Pianka's overlap index to capture the spatial, temporal, and dietary interactions respectively. We found that red fox and leopard cat coexisted by spatial segregation in low human disturbance area, whereas dietary segregation was the means of coexistence in high human disturbance area. We observed a broader dietary breadth for red fox and a narrower for leopard cat in high human disturbance area. The altered coexistence pattern due to differential human disturbances indicates intensive anthropogenic activities adjacent to natural forests. It can link to increased opportunities for shared spaces between mesocarnivores and humans, leading to future disease spread and conflicts. Our study contributes to scant ecological knowledge of these mesocarnivores and adds to our understanding of community dynamics in human-altered ecosystems. The study elucidates the need for long-term monitoring of wildlife inhabiting interface areas to ensure human and wildlife coexistence.
Collapse
Affiliation(s)
- Meghna Bandyopadhyay
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Suvankar Biswas
- Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Tryambak Dasgupta
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Ramesh Krishnamurthy
- Department of Landscape Level Planning and Management, Wildlife Institute of India, Dehradun, Uttarakhand, India.
| |
Collapse
|
5
|
Gravel R, Lai S, Berteaux D. Long-term satellite tracking reveals patterns of long-distance dispersal in juvenile and adult Arctic foxes ( Vulpes lagopus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:220729. [PMID: 36756054 PMCID: PMC9890113 DOI: 10.1098/rsos.220729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/11/2023] [Indexed: 05/04/2023]
Abstract
Long-distance dispersal plays a key role in species distribution and persistence. However, its movement metrics and ecological implications may differ whether it is undertaken by juveniles (natal dispersal) or adults (breeding dispersal). We investigated the influence of life stage on long-distance dispersal in the Arctic fox, an important tundra predator. We fitted 170 individuals with satellite collars during a 13-year study on Bylot Island (Nunavut, Canada), and analysed the tracks of 10 juveniles and 27 adults engaging in long-distance dispersal across the Canadian High Arctic. This behaviour was much more common than expected, especially in juveniles (62.5%, adults: 19.4%). Emigration of juveniles occurred mainly at the end of summer while departure of adults was not synchronized. Juveniles travelled for longer periods and over longer cumulative distances than adults, but spent similar proportions of their time travelling on sea ice versus land. Successful immigration occurred mostly in late spring and was similar for juveniles and adults (30% versus 37%). Our results reveal how life stage influences key aspects of long-distance dispersal in a highly mobile canid. This new knowledge is critical to understand the circumpolar genetic structure of the species, and how Arctic foxes can spread zoonoses across vast geographical areas.
Collapse
Affiliation(s)
- Richard Gravel
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Sandra Lai
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Dominique Berteaux
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| |
Collapse
|
6
|
Gravel R, Lai S, Berteaux D. Long-term satellite tracking reveals patterns of long-distance dispersal in juvenile and adult Arctic foxes ( Vulpes lagopus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:220729. [PMID: 36756054 DOI: 10.5281/zenodo.7521679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/11/2023] [Indexed: 05/21/2023]
Abstract
Long-distance dispersal plays a key role in species distribution and persistence. However, its movement metrics and ecological implications may differ whether it is undertaken by juveniles (natal dispersal) or adults (breeding dispersal). We investigated the influence of life stage on long-distance dispersal in the Arctic fox, an important tundra predator. We fitted 170 individuals with satellite collars during a 13-year study on Bylot Island (Nunavut, Canada), and analysed the tracks of 10 juveniles and 27 adults engaging in long-distance dispersal across the Canadian High Arctic. This behaviour was much more common than expected, especially in juveniles (62.5%, adults: 19.4%). Emigration of juveniles occurred mainly at the end of summer while departure of adults was not synchronized. Juveniles travelled for longer periods and over longer cumulative distances than adults, but spent similar proportions of their time travelling on sea ice versus land. Successful immigration occurred mostly in late spring and was similar for juveniles and adults (30% versus 37%). Our results reveal how life stage influences key aspects of long-distance dispersal in a highly mobile canid. This new knowledge is critical to understand the circumpolar genetic structure of the species, and how Arctic foxes can spread zoonoses across vast geographical areas.
Collapse
Affiliation(s)
- Richard Gravel
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Sandra Lai
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Dominique Berteaux
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| |
Collapse
|
7
|
Gravel R, Lai S, Berteaux D. Long-term satellite tracking reveals patterns of long-distance dispersal in juvenile and adult Arctic foxes ( Vulpes lagopus). ROYAL SOCIETY OPEN SCIENCE 2023; 10:220729. [PMID: 36756054 DOI: 10.6084/m9.figshare.c.6399726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/11/2023] [Indexed: 05/21/2023]
Abstract
Long-distance dispersal plays a key role in species distribution and persistence. However, its movement metrics and ecological implications may differ whether it is undertaken by juveniles (natal dispersal) or adults (breeding dispersal). We investigated the influence of life stage on long-distance dispersal in the Arctic fox, an important tundra predator. We fitted 170 individuals with satellite collars during a 13-year study on Bylot Island (Nunavut, Canada), and analysed the tracks of 10 juveniles and 27 adults engaging in long-distance dispersal across the Canadian High Arctic. This behaviour was much more common than expected, especially in juveniles (62.5%, adults: 19.4%). Emigration of juveniles occurred mainly at the end of summer while departure of adults was not synchronized. Juveniles travelled for longer periods and over longer cumulative distances than adults, but spent similar proportions of their time travelling on sea ice versus land. Successful immigration occurred mostly in late spring and was similar for juveniles and adults (30% versus 37%). Our results reveal how life stage influences key aspects of long-distance dispersal in a highly mobile canid. This new knowledge is critical to understand the circumpolar genetic structure of the species, and how Arctic foxes can spread zoonoses across vast geographical areas.
Collapse
Affiliation(s)
- Richard Gravel
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Sandra Lai
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| | - Dominique Berteaux
- Canada Research Chair on Northen Biodiversity, Centre for Northern Studies and Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Canada G5L 3A1
| |
Collapse
|
8
|
Bandyopadhyay M, Burton AC, Gupta SK, Krishnamurthy R. Understanding the distribution and fine-scale habitat selection of mesocarnivores along a habitat quality gradient in western Himalaya. PeerJ 2022; 10:e13993. [PMID: 36132214 PMCID: PMC9484455 DOI: 10.7717/peerj.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background: Human activities have resulted in a rapid increase of modified habitats in proximity to wildlife habitats in the Himalaya. However, it is crucial to understand the extent to which human habitat modification affects wildlife. Mesocarnivores generally possess broader niches than large carnivores and adapt quickly to human activities. Here, we use a case study in the western Himalaya to test the hypothesis that human disturbance influenced mesocarnivore habitat use. Methods: We used camera trapping and mitochondrial DNA-based species identification from faecal samples to obtain mesocarnivore detections. We then compared the responses of mesocarnivores between an anthropogenic site and a less disturbed park along a contiguous gradient in habitat quality. The non-linear pattern in species-specific habitat selection and factors responsible for space usage around villages was captured using hierarchical generalized additive modelling (HGAM) and non-metric multidimensional scaling (NMDS) ordination. Results: Wildlife occurrences along the gradient varied by species. Leopard cat and red fox were the only terrestrial mesocarnivores that occurred in both anthropogenic site and park. We found a shift in habitat selection from less disturbed habitat in the park to disturbed habitat in anthropogenic site for the species detected in both the habitat types. For instance, red fox showed habitat selection towards high terrain ruggedness (0.5 to 0.7 TRI) and low NDVI (-0.05 to 0.2) in the park but no such specific selection in anthropogenic site. Further, leopard cat showed habitat selection towards moderate slope (20°) and medium NDVI (0.5) in park but no prominent habitat selections in anthropogenic site. The results revealed their constrained behaviour which was further supported by the intensive site usage close to houses, agricultural fields and human trails in villages. Conclusions: Our results indicate shifts in habitat selection and intensive site usage by mesocarnivores in the human-modified habitat. In future, this suggests the possibility of conflict and disease spread affecting both the people and wildlife. Therefore, this study highlights the requisite to test the wildlife responses to rapidly growing human expansions in modified habitats to understand the extent of impact. The management strategies need to have an integrated focus for further expansions of modified habitat and garbage disposal strategies, especially in the human-wildlife interface area.
Collapse
Affiliation(s)
| | - A. Cole Burton
- Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | | | - Ramesh Krishnamurthy
- Wildlife Institute of India, Dehradun, Uttarakhand, India,Faculty of Forestry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
RABIES IN ARCTIC FOX (VULPES LAGOPUS) AND REINDEER (RANGIFER TARANDUS PLATYRHYNCHUS) DURING AN OUTBREAK ON SVALBARD, NORWAY, 2011-12. J Wildl Dis 2022; 58:550-561. [PMID: 35666850 DOI: 10.7589/jwd-d-21-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
Rabies is an important zoonotic disease with high fatality rates in animals and humans. In the Arctic, the Arctic fox (Vulpes lagopus) is regarded as the principal reservoir, but there is considerable debate about how the disease persists at the low population densities that are typical for this species. We describe an outbreak of rabies among Arctic foxes and Svalbard reindeer (Rangifer tarandus platyrhynchus) during 2011-12 on the remote Arctic archipelago of Svalbard, an area with a very low and relatively stable Arctic fox density. The aim of the research was to increase knowledge of Arctic rabies in this ecosystem and in the presumed spillover host, the Svalbard reindeer. Phylogenetic analysis of rabies virus (RABV) RNA isolates from Arctic fox and reindeer was performed, and clinical observations and histologic and immunohistochemical findings in reindeer were described. An ongoing capture-mark-recapture project allowed collection of serum samples from clinically healthy reindeer from the affected population for detection of rabies virus-neutralizing antibodies. The outbreak was caused by at least two different variants belonging to the RABV Arctic-2 and Arctic-3 clades, which suggests that rabies was introduced to Svalbard on at least two different occasions. The RABV variants found in Arctic fox and reindeer were similar within locations, suggesting that Arctic foxes and reindeer acquired the infection from the same source(s). The histopathologic and immunohistochemical findings in 10 reindeer were consistent with descriptions in other species infected with RABV of non-Arctic lineages. Evidence of RABV was detected in both brain and salivary gland samples. None of 158 examined serum samples from clinically healthy reindeer had virus-neutralizing antibodies against RABV.
Collapse
|
10
|
Wang J, Li L, Xu Y, Mao T, Ma Y, Sun X, Liu X, Wang Y, Duan Z. Identification of a novel norovirus species in fox. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105214. [PMID: 35051652 DOI: 10.1016/j.meegid.2022.105214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A novel Norovirus (NoV) was identified by viral metagenomic analysis in fox fecal samples from the Xinjiang Uygur Autonomous Region of China. The virus exhibited typical genomic characteristics of NoVs. It was closely related to the canine NoV GVII strains with 86.0-86.2% and 91.9% amino acid identities in the capsid protein VP1 and RNA-dependent RNA polymerase (RdRp), respectively. The fox NoV clustered phylogenetically with the two canine NoV GVII strains, and it was distant from other NoVs. According to the new classification criteria of NoVs, the new fox NoV belongs to the same genotype as GVII, similar to canine GVII NoVs. Moreover, key amino acid residues in the Histo-blood group antigen (HBGA) binding sites and the HBGA binding pattern of the fox NoV differed significantly from those of human and canine GVII NoVs. This study identified a new GVII norovirus from wild foxes in China. These findings enrich our understanding of the diversity of NoVs and provide further evidence regarding the genetic heterogeneity of NoVs in carnivores.
Collapse
Affiliation(s)
- Jindong Wang
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalong Xu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, China
| | - Tongyao Mao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Ma
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiafei Liu
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
11
|
Deviatkin AA, Vakulenko YA, Dashian MA, Lukashev AN. Evaluating the Impact of Anthropogenic Factors on the Dissemination of Contemporary Cosmopolitan, Arctic, and Arctic-like Rabies Viruses. Viruses 2021; 14:66. [PMID: 35062270 PMCID: PMC8777955 DOI: 10.3390/v14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rabies is a globally prevalent viral zoonosis that causes 59,000 deaths per year and has important economic consequences. Most virus spread is associated with the migration of its primary hosts. Anthropogenic dissemination, mainly via the transportation of rabid dogs, shaped virus ecology a few hundred years ago and is responsible for several current outbreaks. A systematic analysis of aberrant long-distance events in the steppe and Arctic-like groups of rabies virus was performed using statistical (Bayesian) phylogeography and plots of genetic vs. geographic distances. The two approaches produced similar results but had some significant differences and complemented each other. No phylogeographic analysis could be performed for the Arctic group because polar foxes transfer the virus across the whole circumpolar region at high velocity, and there was no correlation between genetic and geographic distances in this virus group. In the Arctic-like group and the steppe subgroup of the cosmopolitan group, a significant number of known sequences (15-20%) was associated with rapid long-distance transfers, which mainly occurred within Eurasia. Some of these events have been described previously, while others have not been documented. Most of the recent long-distance transfers apparently did not result in establishing the introduced virus, but a few had important implications for the phylogeographic history of rabies. Thus, human-mediated long-distance transmission of the rabies virus remains a significant threat that needs to be addressed.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- The National Medical Research Center for Endocrinology, 117036 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (A.N.L.)
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mariia A. Dashian
- Faculty of Biomedicine, Pirogov Medical University, 117997 Moscow, Russia;
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (Y.A.V.); (A.N.L.)
| |
Collapse
|
12
|
Understanding potential implications for non-trophic parasite transmission based on vertebrate behavior at mesocarnivore carcass sites. Vet Res Commun 2021; 45:261-275. [PMID: 34176034 PMCID: PMC8235911 DOI: 10.1007/s11259-021-09806-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023]
Abstract
High infection risk is often associated with aggregations of animals around attractive resources. Here, we explore the behavior of potential hosts of non-trophically transmitted parasites at mesocarnivore carcass sites. We used videos recorded by camera traps at 56 red fox (Vulpes vulpes) carcasses and 10 carcasses of other wild carnivore species in three areas of southeastern Spain. Scavenging species, especially wild canids, mustelids and viverrids, showed more frequent rubbing behavior at carcass sites than non-scavenging and domestic species, suggesting that they could be exposed to a higher potential infection risk. The red fox was the species that most frequently contacted carcasses and marked and rubbed carcass sites. Foxes contacted heterospecific carcasses more frequently and earlier than conspecific ones and, when close contact occurred, it was more likely to be observed at heterospecific carcasses. This suggests that foxes avoid contact with the type of carcass and time period that have the greatest risk as a source of parasites. Overall, non-trophic behaviors of higher infection risk were mainly associated with visitor-carcass contact and visitor contact with feces and urine, rather than direct contact between visitors. Moreover, contact events between scavengers and carnivore carcasses were far more frequent than consumption events, which suggests that scavenger behavior is more constrained by the risk of acquiring meat-borne parasites than non-trophically transmitted parasites. This study contributes to filling key gaps in understanding the role of carrion in the landscape of disgust, which may be especially relevant in the current global context of emerging and re-emerging pathogens.
Collapse
|
13
|
Simon A, Beauchamp G, Bélanger D, Bouchard C, Fehlner-Gardiner C, Lecomte N, Rees E, Leighton PA. Ecology of Arctic rabies: 60 years of disease surveillance in the warming climate of northern Canada. Zoonoses Public Health 2021; 68:601-608. [PMID: 33987941 DOI: 10.1111/zph.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Rabies occurs throughout the Arctic, representing an ongoing public health concern for residents of northern communities. The Arctic fox (Vulpes lagopus) is the main reservoir of the Arctic rabies virus variant, yet little is known about the epidemiology of Arctic rabies, such as the ecological mechanisms driving where and when epizootics in fox populations occur. In this study, we provide the first portrait of the spatio-temporal spread of rabies across northern Canada. We also explore the impact of seasonal and multiannual dynamics in Arctic fox populations and climatic factors on rabies transmission dynamics. We analysed data on rabies cases collected through passive surveillance systems in the Yukon, Northwest Territories, Nunavut, Nunavik and Labrador from 1953 to 2014. In addition, we analysed a large and unique database of trapped foxes tested for rabies in the Northwest Territories and Nunavut from 1974 to 1984 as part of active surveillance studies. Rabies cases occurred in all Arctic regions of Canada and were relatively synchronous among foxes and dogs (Canis familiaris). This study highlights the spread of Arctic rabies virus variant across northern Canada, with contrasting rabies dynamics between different yet connected areas. Population fluctuations of Arctic fox populations could drive rabies transmission dynamics in a complex way across northern Canada. Furthermore, this study suggests different impacts of climate and sea ice cover on the onset of rabies epizootics in northern Canada. These results lay the groundwork for the development of epidemiological models to better predict the spatio-temporal dynamics of rabies occurrence in both wild and domestic carnivores, leading to better estimates of human exposure and transmission risk.
Collapse
Affiliation(s)
- Audrey Simon
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Guy Beauchamp
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Denise Bélanger
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Catherine Bouchard
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Christine Fehlner-Gardiner
- Centre of Expertise for Rabies, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques, Department of Biology, University of Moncton, Moncton, NB, Canada
| | - Erin Rees
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Patrick A Leighton
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|