1
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Danzmann RG, Ferguson MM. Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Evol Dev 2025; 27:e70000. [PMID: 39723482 DOI: 10.1111/ede.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, Ontario, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Beemelmanns A, Bouchard R, Michaelides S, Normandeau E, Jeon HB, Chamlian B, Babin C, Hénault P, Perrot O, Harris LN, Zhu X, Fraser D, Bernatchez L, Moore JS. Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Mol Ecol Resour 2024:e14040. [PMID: 39552382 DOI: 10.1111/1755-0998.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Single nucleotide polymorphism (SNP) panels are powerful tools for assessing the genetic population structure and dispersal of fishes and can enhance management practices for commercial, recreational and subsistence mixed-stock fisheries. Arctic Char (Salvelinus alpinus), Brook Trout (Salvelinus fontinalis) and Lake Whitefish (Coregonus clupeaformis) are among the most harvested and consumed fish species in Northern Indigenous communities in Canada, contributing significantly to food security, culture, tradition and economy. However, genetic resources supporting Indigenous fisheries have not been widely accessible to northern communities (e.g. Inuit, Cree, Dene). Here, we developed Genotyping-in-Thousands by sequencing (GT-seq) panels for population assignment and mixed-stock analyses of three salmonids, to support fisheries stewardship or co-management in Northern Canada. Using low-coverage Whole Genome Sequencing data from 418 individuals across source populations in Cambridge Bay (Nunavut), Great Slave Lake (Northwest Territories), James Bay (Québec) and Mistassini Lake (Québec), we developed a bioinformatic SNP filtering workflow to select informative SNP markers from genotype likelihoods. These markers were then used to design GT-seq panels, thus enabling high-throughput genotyping for these species. The three GT-seq panels yielded an average of 413 autosomal loci and were validated using 525 individuals with an average assignment accuracy of 83%. Thus, these GT-seq panels are powerful tools for assessing population structure and quantifying the relative contributions of populations/stocks in mixed-stock fisheries across multiple regions. Interweaving genomic data derived from these tools with Traditional Ecological Knowledge will ensure the sustainable harvest of three culturally important salmonids in Indigenous communities, contributing to food security programmes and the economy in Northern Canada.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Raphaël Bouchard
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Sozos Michaelides
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Plateforme de Bio-Informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Quebec, Canada
| | - Hyung-Bae Jeon
- Department of Biology, Concordia University, Montreal, Québec, Canada
- National Institute of Biological Resources, Biodiversity Research and Cooperation Division, Incheon, Republic of Korea
| | - Badrouyk Chamlian
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Charles Babin
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Philippe Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Océane Perrot
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Les N Harris
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Xinhua Zhu
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Dylan Fraser
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Liu A, Geraldes A, Taylor EB. Historical and contemporary processes driving the origin and structure of an admixed population within a contact zone between subspecies of a north temperate diadromous fish. Mol Ecol 2024; 33:e17459. [PMID: 38994921 DOI: 10.1111/mec.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 07/13/2024]
Abstract
Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.
Collapse
Affiliation(s)
- Amy Liu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armando Geraldes
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric B Taylor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Beaty Biodiversity Museum, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Editorial Note: Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0304369. [PMID: 38833497 PMCID: PMC11149859 DOI: 10.1371/journal.pone.0304369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
|
5
|
Judson BJ, Kristjánsson BK, Leblanc CA, Ferguson MM. The role of neutral and adaptive evolutionary processes on patterns of genetic diversity across small cave-dwelling populations of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2024; 14:e11363. [PMID: 38770124 PMCID: PMC11103641 DOI: 10.1002/ece3.11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Understanding the adaptability of small populations in the face of environmental change is a central problem in evolutionary biology. Solving this problem is challenging because neutral evolutionary processes that operate on historical and contemporary timescales can override the effects of selection in small populations. We assessed the effects of isolation by colonization (IBC), isolation by dispersal limitation (IBDL) as reflected by a pattern of isolation by distance (IBD), and isolation by adaptation (IBA) and the roles of genetic drift and gene flow on patterns of genetic differentiation among 19 cave-dwelling populations of Icelandic Arctic charr (Salvelinus alpinus). We detected evidence of IBC based on the genetic affinity of nearby cave populations and the genetic relationships between the cave populations and the presumed ancestral population in the lake. A pattern of IBD was evident regardless of whether high-level genetic structuring (IBC) was taken into account. Genetic signatures of bottlenecks and lower genetic diversity in smaller populations indicate the effect of drift. Estimates of gene flow and fish movement suggest that gene flow is limited to nearby populations. In contrast, we found little evidence of IBA as patterns of local ecological and phenotypic variation showed little association with genetic differentiation among populations. Thus, patterns of genetic variation in these small populations likely reflect localized gene flow and genetic drift superimposed onto a larger-scale structure that is largely a result of colonization history. Our simultaneous assessment of the effects of neutral and adaptive processes in a tractable and replicated system has yielded novel insights into the evolution of small populations on both historical and contemporary timescales and over a smaller spatial scale than is typically studied.
Collapse
Affiliation(s)
- Braden J. Judson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | | | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
6
|
von Schalburg KR, Gowen BE, Christensen KA, Ignatz EH, Hall JR, Rise ML. The late-evolving salmon and trout join the GnRH1 club. Histochem Cell Biol 2023; 160:517-539. [PMID: 37566258 DOI: 10.1007/s00418-023-02227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada.
| | - Brent E Gowen
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
7
|
Dallaire X, Bouchard R, Hénault P, Ulmo-Diaz G, Normandeau E, Mérot C, Bernatchez L, Moore JS. Widespread Deviant Patterns of Heterozygosity in Whole-Genome Sequencing Due to Autopolyploidy, Repeated Elements, and Duplication. Genome Biol Evol 2023; 15:evad229. [PMID: 38085037 PMCID: PMC10752349 DOI: 10.1093/gbe/evad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Most population genomic tools rely on accurate single nucleotide polymorphism (SNP) calling and filtering to meet their underlying assumptions. However, genomic complexity, resulting from structural variants, paralogous sequences, and repetitive elements, presents significant challenges in assembling contiguous reference genomes. Consequently, short-read resequencing studies can encounter mismapping issues, leading to SNPs that deviate from Mendelian expected patterns of heterozygosity and allelic ratio. In this study, we employed the ngsParalog software to identify such deviant SNPs in whole-genome sequencing (WGS) data with low (1.5×) to intermediate (4.8×) coverage for four species: Arctic Char (Salvelinus alpinus), Lake Whitefish (Coregonus clupeaformis), Atlantic Salmon (Salmo salar), and the American Eel (Anguilla rostrata). The analyses revealed that deviant SNPs accounted for 22% to 62% of all SNPs in salmonid datasets and approximately 11% in the American Eel dataset. These deviant SNPs were particularly concentrated within repetitive elements and genomic regions that had recently undergone rediploidization in salmonids. Additionally, narrow peaks of elevated coverage were ubiquitous along all four reference genomes, encompassed most deviant SNPs, and could be partially associated with transposons and tandem repeats. Including these deviant SNPs in genomic analyses led to highly distorted site frequency spectra, underestimated pairwise FST values, and overestimated nucleotide diversity. Considering the widespread occurrence of deviant SNPs arising from a variety of sources, their important impact in estimating population parameters, and the availability of effective tools to identify them, we propose that excluding deviant SNPs from WGS datasets is required to improve genomic inferences for a wide range of taxa and sequencing depths.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
| | - Raphael Bouchard
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Philippe Hénault
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Gabriela Ulmo-Diaz
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Eric Normandeau
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
- Plateforme de bio-informatique de l’IBIS, Université Laval, Québec, Canada
| | - Claire Mérot
- CNRS, UMR 6553 ECOBIO, Université de Rennes, Rennes, France
| | - Louis Bernatchez
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| | - Jean-Sébastien Moore
- Institut de biologie intégrative et des systèmes, Université Laval, Québec, Canada
- Centre d'Études Nordiques, Université Laval, Québec, Canada
- Ressources Aquatique Québec, Université de Rimouski, Rimouski, Canada
| |
Collapse
|
8
|
Correction: The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS One 2021; 16:e0262189. [PMID: 34969051 PMCID: PMC8717986 DOI: 10.1371/journal.pone.0262189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, Ragoussis J, Penney CM, Scribner KT, Luikart G, Wilson CC, Bernatchez L. A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush). Mol Ecol Resour 2021; 22:679-694. [PMID: 34351050 PMCID: PMC9291852 DOI: 10.1111/1755-0998.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
Here, we present an annotated, chromosome‐anchored, genome assembly for Lake Trout (Salvelinus namaycush) – a highly diverse salmonid species of notable conservation concern and an excellent model for research on adaptation and speciation. We leveraged Pacific Biosciences long‐read sequencing, paired‐end Illumina sequencing, proximity ligation (Hi‐C) sequencing, and a previously published linkage map to produce a highly contiguous assembly composed of 7378 contigs (contig N50 = 1.8 Mb) assigned to 4120 scaffolds (scaffold N50 = 44.975 Mb). Long read sequencing data were generated using DNA from a female double haploid individual. 84.7% of the genome was assigned to 42 chromosome‐sized scaffolds and 93.2% of Benchmarking Universal Single Copy Orthologues were recovered, putting this assembly on par with the best currently available salmonid genomes. Estimates of genome size based on k‐mer frequency analysis were highly similar to the total size of the finished genome, suggesting that the entirety of the genome was recovered. A mitochondrial genome assembly was also produced. Self‐versus‐self synteny analysis allowed us to identify homeologs resulting from the salmonid specific autotetraploid event (Ss4R) as well as regions exhibiting delayed rediploidization. Alignment with three other salmonid genomes and the Northern Pike (Esox lucius) genome also allowed us to identify homologous chromosomes in related taxa. We also generated multiple resources useful for future genomic research on Lake Trout, including a repeat library and a sex‐averaged recombination map. A novel RNA sequencing data set for liver tissue was also generated in order to produce a publicly available set of annotations for 49,668 genes and pseudogenes. Potential applications of these resources to population genetics and the conservation of native populations are discussed.
Collapse
Affiliation(s)
- Seth R Smith
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Haig Djambazian
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | - Pubudu M Nawarathna
- Department of Human Genetics, Canadian Centre for Computational Genomics (C3G, McGill University, Montréal, QC, Canada
| | - Pierre Berube
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | | | - Jiannis Ragoussis
- McGill Genome Centre, Department of Human Genetics, Montreal, QC, Canada
| | - Chantelle M Penney
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Kim T Scribner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Gordon Luikart
- Fish and Wildlife Genomics Group, University of Montana, Missoula, MT, USA.,Flathead Lake Biological Station, Division of Biological Sciences, University of Montana, Polson, MT, USA
| | - Chris C Wilson
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| |
Collapse
|
10
|
Dallaire X, Normandeau É, Mainguy J, Tremblay J, Bernatchez L, Moore J. Genomic data support management of anadromous Arctic Char fisheries in Nunavik by highlighting neutral and putatively adaptive genetic variation. Evol Appl 2021; 14:1880-1897. [PMID: 34295370 PMCID: PMC8287999 DOI: 10.1111/eva.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Distinguishing neutral and adaptive genetic variation is one of the main challenges in investigating processes shaping population structure in the wild, and landscape genomics can help identify signatures of adaptation to contrasting environments. Arctic Char (Salvelinus alpinus) is an anadromous salmonid and the most harvested fish species by Inuit people, including in Nunavik (Québec, Canada), one of the most recently deglaciated regions in the world. Unlike many other anadromous salmonids, Arctic Char occupy coastal habitats near their natal rivers during their short marine phase restricted to the summer ice-free period. Our main objective was to document putatively neutral and adaptive genomic variation in anadromous Arctic Char populations from Nunavik and bordering regions to inform local fisheries management. We used genotyping by sequencing (GBS) to genotype 18,112 filtered single nucleotide polymorphisms (SNP) in 650 individuals from 23 sampling locations along >2000 km of coastline. Our results reveal a hierarchical genetic structure, whereby neighboring hydrographic systems harbor distinct populations grouped by major oceanographic basins: Hudson Bay, Hudson Strait, Ungava Bay, and Labrador Sea. We found genetic diversity and differentiation to be consistent both with the expected postglacial recolonization history and with patterns of isolation-by-distance reflecting contemporary gene flow. Results from three gene-environment association methods supported the hypothesis of local adaptation to both freshwater and marine environments (strongest associations with sea surface and air temperatures during summer and salinity). Our results support a fisheries management strategy at a regional scale, and other implications for hatchery projects and adaptation to climate change are discussed.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Julien Mainguy
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Jean‐Éric Tremblay
- Département de Biologie, Université LavalQuébecQCCanada
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Jean‐Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| |
Collapse
|
11
|
Gillard GB, Grønvold L, Røsæg LL, Holen MM, Monsen Ø, Koop BF, Rondeau EB, Gundappa MK, Mendoza J, Macqueen DJ, Rohlfs RV, Sandve SR, Hvidsten TR. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biol 2021; 22:103. [PMID: 33849620 PMCID: PMC8042706 DOI: 10.1186/s13059-021-02323-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago. RESULTS We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of "toxic mutations". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression. CONCLUSIONS Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.
Collapse
Affiliation(s)
- Gareth B. Gillard
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Grønvold
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L. Røsæg
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Monsen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, Canada
| | - Eric B. Rondeau
- Department of Biology, University of Victoria, Victoria, Canada
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John Mendoza
- Department of Computer Science, San Francisco State University, San Francisco, USA
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Rori V. Rohlfs
- Department of Biology, San Francisco State University, San Francisco, USA
| | - Simen R. Sandve
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|