1
|
Villela LB, da Silva-Lima AW, Moreira APB, Aiube YRA, Ribeiro FDV, Villela HDM, Majzoub ME, Amario M, de Moura RL, Thomas T, Peixoto RS, Salomon PS. Bacterial and Symbiodiniaceae communities' variation in corals with distinct traits and geographical distribution. Sci Rep 2024; 14:24319. [PMID: 39414857 PMCID: PMC11484869 DOI: 10.1038/s41598-024-70121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/13/2024] [Indexed: 10/18/2024] Open
Abstract
Coral microbiomes play crucial roles in holobiont homeostasis and adaptation. The host's ability to populate broad ecological niches and to cope with environmental changes seems to be related to the flexibility of the coral microbiome. By means of high-throughput DNA sequencing we characterized simultaneously both bacterial (16S rRNA) and Symbiodiniaceae (ITS2) communities of four reef-building coral species (Mussismilia braziliensis, Mussismilia harttii, Montastraea cavernosa, and Favia gravida) that differ in geographic distribution and niche specificity. Samples were collected in a marginal reef system (Abrolhos, Brazil) in four sites of contrasting irradiance and turbidity. Biological filters governed by the host are important in shaping corals' microbiome structure. More structured associated microbial communities by reef site tend to occur in coral species with broader geographic and depth ranges, especially for Symbiodiniaceae, whereas the endemic and habitat-specialist host, M. braziliensis, has relatively more homogenous bacterial communities with more exclusive members. Our findings lend credence to the hypothesis that higher microbiome flexibility renders corals more adaptable to diverse environments, a trend that should be investigated in more hosts and reef areas.
Collapse
Affiliation(s)
- Livia Bonetti Villela
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Arthur Weiss da Silva-Lima
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Ana Paula Barbosa Moreira
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Yuri Ricardo Andrade Aiube
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Felipe de Vargas Ribeiro
- Marine Biology Department, Biology Institute, Fluminense Federal University, Niterói, RJ, 24210-201, Brazil
| | - Helena Dias Muller Villela
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Makkah, Saudi Arabia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michelle Amario
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Rodrigo Leão de Moura
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Raquel Silva Peixoto
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Makkah, Saudi Arabia
| | - Paulo Sergio Salomon
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
2
|
De Souza Coração AC, Gomes BA, Chyaromont AM, Lannes-Vieira ACP, Gomes APB, Lopes-Filho EAP, Leitão SG, Teixeira VL, De Paula JC. How the Ecology of Calcified Red Macroalgae is Investigated under a Chemical Approach? A Systematic Review and Bibliometric Study. J Chem Ecol 2024:10.1007/s10886-024-01525-7. [PMID: 38958678 DOI: 10.1007/s10886-024-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.
Collapse
Affiliation(s)
- Amanda Cunha De Souza Coração
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil.
| | - Brendo Araujo Gomes
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenue Carlos Chagas Filho, 373, Rio de Janeiro, CEP: 21941-590, Brazil
| | - Amanda Mendonça Chyaromont
- Centro de Ciências Biológicas e da Saúde, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Ana Christina Pires Lannes-Vieira
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Ana Prya Bartolo Gomes
- Centro de Ciências Biológicas e da Saúde, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| | - Erick Alves Pereira Lopes-Filho
- Programa de Pós-Graduação em Ciências Biológicas (Botânica), Museu Nacional, Universidade Federal do Rio de Janeiro, , Quinta da Boa Vista s/n, Horto Botânico, Rio de Janeiro, CEP: 20.940-040, Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenue Carlos Chagas Filho, 373, Rio de Janeiro, CEP: 21941-590, Brazil
| | - Valéria Laneuville Teixeira
- Instituto de Biologia, Universidade Federal Fluminense, Professor Marcos Waldemar de Freitas Reis Street, s/n, Niterói, Rio de Janeiro, CEP: 24.210-201, Brazil
| | - Joel Campos De Paula
- Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Centro de Ciências Biológicas e da Saúde, Universidade Federal do Estado do Rio de Janeiro, Avenue Pasteur, 458, Rio de Janeiro, Urca, CEP: 22.290-255, Brazil
| |
Collapse
|
3
|
Carneiro IM, Sá JA, Chiroque-Solano PM, Cardoso FC, Castro GM, Salomon PS, Bastos AC, Moura RL. Precision and accuracy of common coral reef sampling protocols revisited with photogrammetry. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106304. [PMID: 38142582 DOI: 10.1016/j.marenvres.2023.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The rapid decline of coral reefs calls for cost-effective benthic cover data to improve reef health forecasts, policy building, management responses and evaluation. Reef monitoring has been largely based on divers' observations along transects, and secondarily on quadrat-based protocols, video and photographic records. However, the accuracy and precision of the most common sampling approaches are not yet fully understood. Here, we compared benthic cover estimates from three common sampling protocols: Reef Check (RC), Atlantic and Gulf Rapid Reef Assessment (AGRRA) and photoquadrats (PQ). The reef cover of two contrasting sites was reconstructed with ∼450 m2 orthomosaics built with high resolution Structure-from-Motion (SfM) photogrammetry, which were used as references for comparisons among protocols. In addition, we explored sample size requirements for each protocol and provided cost-effectiveness comparisons. Our results evidenced between-reef differences in the accuracy and precision of estimates with the different protocols. The three protocols performed similarly in the reef with low macroalgal cover (<0.5%), but PQ were more accurate and precise in the reef with relatively high (∼20%) macroalgal cover. The sample size for estimating coral cover with a 20% error margin and a 0.05 significance level was lower for PQ, followed by AGRRA and RC. Considering performance, cost surrogates and equipment needs, cost-effectiveness was higher for PQ. We also discuss costs, limitations and advantages/disadvantages of SfM photogrammetry as a sampling approach for coral reef monitoring.
Collapse
Affiliation(s)
- Ivan M Carneiro
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João A Sá
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pamela M Chiroque-Solano
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando C Cardoso
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme M Castro
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paulo S Salomon
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alex C Bastos
- Departamento de Oceanografia, Universidade Federal do Espirito Santo, Vitória, ES, Brazil
| | - Rodrigo L Moura
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Schoepf V, Baumann JH, Barshis DJ, Browne NK, Camp EF, Comeau S, Cornwall CE, Guzmán HM, Riegl B, Rodolfo-Metalpa R, Sommer B. Corals at the edge of environmental limits: A new conceptual framework to re-define marginal and extreme coral communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163688. [PMID: 37105476 DOI: 10.1016/j.scitotenv.2023.163688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The worldwide decline of coral reefs has renewed interest in coral communities at the edge of environmental limits because they have the potential to serve as resilience hotspots and climate change refugia, and can provide insights into how coral reefs might function in future ocean conditions. These coral communities are often referred to as marginal or extreme but few definitions exist and usage of these terms has therefore been inconsistent. This creates significant challenges for categorising these often poorly studied communities and synthesising data across locations. Furthermore, this impedes our understanding of how coral communities can persist at the edge of their environmental limits and the lessons they provide for future coral reef survival. Here, we propose that marginal and extreme coral communities are related but distinct and provide a novel conceptual framework to redefine them. Specifically, we define coral reef extremeness solely based on environmental conditions (i.e., large deviations from optimal conditions in terms of mean and/or variance) and marginality solely based on ecological criteria (i.e., altered community composition and/or ecosystem functioning). This joint but independent assessment of environmental and ecological criteria is critical to avoid common pitfalls where coral communities existing outside the presumed optimal conditions for coral reef development are automatically considered inferior to coral reefs in more traditional settings. We further evaluate the differential potential of marginal and extreme coral communities to serve as natural laboratories, resilience hotspots and climate change refugia, and discuss strategies for their conservation and management as well as priorities for future research. Our new classification framework provides an important tool to improve our understanding of how corals can persist at the edge of their environmental limits and how we can leverage this knowledge to optimise strategies for coral reef conservation, restoration and management in a rapidly changing ocean.
Collapse
Affiliation(s)
- Verena Schoepf
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; UWA Oceans Institute, University of Western Australia, Perth, Western Australia, Australia.
| | - Justin H Baumann
- Department of Biology, Mount Holyoke College, South Hadley, MA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nicola K Browne
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Steeve Comeau
- Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-mer, France
| | - Christopher E Cornwall
- School of Biological Sciences and Coastal People: Southern Skies, Victoria University of Wellington, Wellington, New Zealand
| | - Héctor M Guzmán
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Bernhard Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Riccardo Rodolfo-Metalpa
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de Nouvelle-Calédonie, Nouméa, New Caledonia; Labex ICONA, International CO(2) Natural Analogues Network, Japan
| | - Brigitte Sommer
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Cardoso GO, Falsarella LN, Chiroque-Solano PM, Porcher CC, Leitzke FP, Wegner AC, Carelli T, Salomon PS, Bastos AC, Sá F, Fallon S, Salgado LT, Moura RL. Coral growth bands recorded trace elements associated with the Fundão dam collapse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150880. [PMID: 34634342 DOI: 10.1016/j.scitotenv.2021.150880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In November 2015, the collapse of the Fundão dam (Minas Gerais, Brazil) carried over 40 × 106 m3 of iron ore tailings into the Doce river and caused massive environmental and socioeconomic impacts across the watershed. The downstream mudslide scavenged contaminants deposited in the riverbed, and several potentially toxic elements were further released through reduction and solubilization of Fe oxy-hydroxides under estuarine conditions. A turbidity plume was formed off the river mouth, but the detection of contaminants' dispersion in the ocean remains poorly assessed. This situation is specially concerning because Southwestern Atlantic's largest and richest reefs are located 70-250 km to the north of the Doce river mouth, and the legal dispute over the extent of monitoring, compensation and restoration measures are based either on indirect evidence from modeling or on direct evidence from remote sensing and contaminated organisms. Coral skeletons can incorporate trace elements and are considered good monitors of marine pollution, including inputs from open cut mining. Here, we studied a Montastraea cavernosa (Linnaeus 1767) coral colony collected 220 km northward to the river mouth, using X-rays for assessing growth bands and Laser Ablation Inductively Coupled Plasma Mass Spectrometry to recover trace elements incorporated in growth bands formed between 2014 and 2018. A threefold positive Fe anomaly was identified in early 2016, associated with negative anomalies in several elements. Variation in Ba and Y was coherent with the region's sedimentation dynamics, but also increased after 2016, akin to Pb, V and Zn. Coral growth rates decreased after the disaster. Besides validating M. cavernosa as a reliable archive of ocean chemistry, our results evidence wide-reaching sub-lethal coral contamination in the Abrolhos reefs, as well as different incorporation mechanisms into corals' skeletons.
Collapse
Affiliation(s)
- Gabriel O Cardoso
- Programa de Pós-Graduação em Ecologia and Núcleo Professor Rogério Vale de Produção Sustentável-SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-900 Rio de Janeiro, RJ, Brazil
| | - Ludmilla N Falsarella
- Programa de Pós-Graduação em Ecologia and Núcleo Professor Rogério Vale de Produção Sustentável-SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-900 Rio de Janeiro, RJ, Brazil
| | - Pamela M Chiroque-Solano
- Programa de Pós-Graduação em Ecologia and Núcleo Professor Rogério Vale de Produção Sustentável-SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-900 Rio de Janeiro, RJ, Brazil; Departamento de Tecnologias e Linguagens, Instituto Multidisciplinar, Universidade Federal Rural do Rio de Janeiro, 26020-740 Nova Iguaçu, RJ, Brazil
| | - Carla C Porcher
- Laboratório de Geologia Isotópica, Centro de Estudos em Petrologia e Geoquímica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | - Felipe P Leitzke
- Laboratório de Geologia Isotópica, Centro de Estudos em Petrologia e Geoquímica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | - Aline C Wegner
- Laboratório de Geologia Isotópica, Centro de Estudos em Petrologia e Geoquímica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | - Thiago Carelli
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro, 22240-490 Rio de Janeiro, RJ, Brazil
| | - Paulo S Salomon
- Programa de Pós-Graduação em Ecologia and Núcleo Professor Rogério Vale de Produção Sustentável-SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-900 Rio de Janeiro, RJ, Brazil
| | - Alex C Bastos
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil
| | - Fabian Sá
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil
| | - Stewart Fallon
- Radiocarbon Dating Laboratory, The Australian National University, Canberra, ACT 0200, Australia
| | - Leonardo T Salgado
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 22460-030 Rio de Janeiro, RJ, Brazil
| | - Rodrigo L Moura
- Programa de Pós-Graduação em Ecologia and Núcleo Professor Rogério Vale de Produção Sustentável-SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Soares MO, Kitahara MV, Santos MEA, Bejarano S, Rabelo EF, Cruz ICS. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105535. [PMID: 34879290 DOI: 10.1016/j.marenvres.2021.105535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In the Southwestern Atlantic reefs (SWA), some species of massive scleractinians and zoantharians are adapted to turbid waters, periodic desiccation, and sediment resuspension events. Moreover, phase shifts in this region have mostly been characterized by the emergence of algae and, less typically, zoantharians. However, nutrient excess and organic pollution are key drivers of the hard coral habitat degradation and may, thus, favor the emergence of novel zoantharian-dominated habitats. Many zoantharian species, particularly those from the genera Palythoa and Zoanthus, have traits that could help them thrive under conditions detrimental to reef-building corals, including rapid growth, several asexual reproduction strategies, high morphological plasticity, and generalist nutrient acquisition strategies. Thus, in a near future, stress-tolerant zoantharians may thrive in nutrient-enriched subtidal SWA locations under low heat stress, such as, upwelling. Overall, coral-zoantharian phase shifts in the SWA may decrease the species richness of reef communities, ultimately influencing ecosystem functioning and services, such as the provision of nursery habitats, fish biomass production, and coastline protection. However, zoantharians will also be threatened at intertidal zones, which are expected to experience higher heat stress, solar radiation, and sea-level rise. Although zoantharians appear to cope well with some local stressors (e.g., decreasing water quality), they are vulnerable to climate change (e.g., heatwaves), invasive species (Tubastraea spp.), microplastics, diseases, and mostly restricted to a narrow depth range (0-15 m depth) in SWA reefs. This shallow zone is particularly affected by climate change, compressing the three-dimensional habitat and limiting depth refugia in deeper SWA reefs. As mesophotic ecosystems have been hypothesized as short-term refuges to disturbances for some species, the narrow depth limit of zoantharians seems to be a potential factor that might increase their vulnerability to growing climate change pressures in SWA shallow-water reefs. Together, these could lead to both range expansions in some locations and loss of suitable reef habitats in other sites. Additional research is needed to better understand the systemic responses of these novel SWA reefs to the concert of increasing and interactive local and global stressors, and their implications for ecosystem functioning and service provisions.
Collapse
Affiliation(s)
- Marcelo Oliveira Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | | | | | - Sonia Bejarano
- Reef Systems Research Group, Leibniz Center for Tropical Marine Research (ZMT), Bremen, Germany
| | | | - Igor Cristino Silva Cruz
- Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
8
|
Quirino-Amador MI, Longo GO, Freire FADM, Lopes PFM. Integrating Different Types of Knowledge to Understand Temporal Changes in Reef Landscapes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.709414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reefs are highly diverse ecosystems threatened by anthropogenic actions that change their structure and dynamics. Many of these changes have been witnessed by different reef users who hold specific knowledge about the reefscape according to their experiences and uses. We aimed to understand whether fishers, divers, and reef scientists have different perceptions of general changes that have occurred in reefs and whether their knowledge converge, diverge or are complementary. We conducted 172 semi-structured interviews with stakeholders from Northeast and Southeast Brazil where either coral or rocky reefs occur, comprising most reefs occurring in the Southwestern Atlantic Ocean. Reef scientists and divers perceived corals have undergone the sharpest declines among reef species and indicate pollution and tourism as the major negative impacts on reefs. On the contrary, fishers noticed greater declines in fishing targets (i.e., groupers) and have hardly noticed differences in coral abundance or diversity over time. Divers had a broader view of changes in reef organisms, with some level of convergence with both reef scientists and fishers, while reef scientists and fishers provided information on more specific groups and economically relevant resources, respectively. The different stakeholders generally agree that reefscapes have undergone negative changes including diversity loss and abundance declines of reef organisms. The complementarity of information among different stakeholders enables a better understanding of how human behavior impact and perceive changes in natural ecosystems, which could be essential to manage reef environments, particularly those without baseline data.
Collapse
|
9
|
Bauer AB, Schwarzhans WW, Moura RL, Nunes JACC, Mincarone MM. A new species of viviparous brotula genus Pseudogilbia (Ophidiiformes: Dinematichthyidae) from Brazilian reefs, with an updated diagnosis of the genus. JOURNAL OF FISH BIOLOGY 2021; 99:1292-1298. [PMID: 34180056 DOI: 10.1111/jfb.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new species of Pseudogilbia Møller, Schwarzhans & Nielsen 2004 is described based on two male specimens (40-44 mm LS ) from shallow reefs of Bahia, Brazil. Pseudogilbia australis sp. nov. is distinguished from its only congener, Pseudogilbia sanblasensis Møller, Schwarzhans & Nielsen 2004 from Caribbean Panama, by having: two lower preopercular pores (vs. one); dorsal-fin rays 65-67 (vs. 69); anal-fin rays 51-53 (vs. 56); pectoral-fin rays 18 (vs. 20); caudal vertebrae 27-28 (vs. 30); pectoral-fin length 15.0%-15.9% LS (vs. 14.3); pelvic-fin length 13.5% LS (vs. 16.4) and a different morphology of the male copulatory organ. Pseudogilbia australis sp. nov. is the only dinematichthyid so far recorded in the South Atlantic. An updated diagnosis for the genus is also provided.
Collapse
Affiliation(s)
- Arthur B Bauer
- Programa de Pós-Graduação em Ciências Ambientais e Conservação (PPG-CiAC), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Brazil
| | - Werner W Schwarzhans
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo L Moura
- Instituto de Biologia and SAGE/COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - José Anchieta C C Nunes
- Laboratório de Oceanografia Biológica, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Michael M Mincarone
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Brazil
| |
Collapse
|
10
|
Pereira PHC, Côrtes LGF, Lima GV, Gomes E, Pontes AVF, Mattos F, Araújo ME, Ferreira-Junior F, Sampaio CLS. Reef fishes biodiversity and conservation at the largest Brazilian coastal Marine Protected Area (MPA Costa dos Corais). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Coral reefs harbor one of the largest fish biodiversity on earth; yet information on reef fishes is still absent for many regions. We analyzed reef fish richness, distribution, and conservation on the largest Brazilian multiple use coastal MPA; which cover a large extent of coral reefs at the SWA. A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). Fish species were represented by 81 families and the most representative families were Carangidae (23 species), Labridae (21) and Gobiidae (15). The MPA fish richness represented 44% of all recorded fish species of the Southwestern Atlantic Ocean (SWA) highlighting the large-scale importance of this MPA. A total of 40 species (12%) are registered at Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). This study reinforces the importance of MPA Costa dos Corais on reef fish biodiversity and conservation and emphasize the urgent need of conservation strategies.
Collapse
Affiliation(s)
| | - Luís G. F. Côrtes
- Projeto Conservação Recifal, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | - Erandy Gomes
- Projeto Conservação Recifal, Brazil; Universidade Federal de Pernambuco, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | | | - Maria E. Araújo
- Universidade Federal de Pernambuco, Brazil; Universidade Federal de Pernambuco, Brazil
| | | | | |
Collapse
|