1
|
Nicolás ACCV, Dode MAN. Current status of the intrafollicular transfer of immature oocytes (IFIOT) in cattle: A review. Anim Reprod Sci 2024; 267:107523. [PMID: 38879973 DOI: 10.1016/j.anireprosci.2024.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Intrafollicular Transfer of Immature Oocytes (IFIOT) has emerged as an alternative to the currently used systems for bovine embryo production. This technique associates the rapid multiplication of bovine females under a completely in vivo culture condition, eliminating the need for superstimulatory hormones in the in vivo system (IVD) and the costly laboratory setup required for in vitro embryo production (IVP). Despite being a promising technique, the results obtained to date have been unsatisfactory for commercial use. Only approximately 10 % -12 % of viable embryos are recovered from the total number of injected oocytes, which limits their use in genetic improvement programs. IFIOT problems can occur in any of the steps involved; therefore, each step must be carefully examined to identify those that have the most negative impact on the final embryo recovery. This review summarizes the different studies conducted using the IFIOT to provide a comprehensive analysis of the main factors that can influence the effectiveness of this technique.
Collapse
Affiliation(s)
| | - Margot Alves Nunes Dode
- Embrapa - Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Asa Norte, Brasília, DF 70770-917, Brazil.
| |
Collapse
|
2
|
Dode MAN, Capobianco N, Vargas LN, Mion B, Kussano NR, Spricigo JF, Franco MM. Seminal cell-free DNA as a potential marker for in vitro fertility of Nellore bulls. J Assist Reprod Genet 2024; 41:1357-1370. [PMID: 38438770 PMCID: PMC11143116 DOI: 10.1007/s10815-024-03068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
PURPOSE This study aimed to identify a marker for freezability and in vitro fertility of sperm samples before freezing. METHODS Semen was collected from nine Nelore bulls; half of the ejaculate was used for seminal plasma cell-free DNA (cfDNA) quantification, and the other half was cryopreserved. Evaluation of sperm movement using computer-assisted semen analysis and plasma membrane integrity and stability, acrosomal integrity, apoptosis, and mitochondrial potential using flow cytometry were performed on fresh and frozen/thawed semen at 0, 3, 6, and 12 h after thawing. Frozen/thawed sperm was also used for in vitro embryo production. cfDNA was extracted from each bull, and the total DNA and number of cell-free mitochondrial DNA (cfmtDNA) copies were quantified. Semen from each animal was used for IVF, and cleavage, blastocyst formation, and cell counts were evaluated. RESULTS Two groups were formed and compared based on the concentrations of cfDNA and cfmDNA present: low-cfDNA and high-cfDNA and low-cfmtDNA and high-cfmtDNA. Up to 12 h post-thawing, there were no differences between the groups in the majority of the sperm parameters evaluated. Cleavage, day 6 and 7 blastocyst rates, and the number of cells were higher in the high cfDNA group than in the low cfDNA group. Similar results were observed for cfmtDNA, except for the number of cells, which was similar between the groups. CONCLUSION The concentration of cfDNA and the relative number of copies of cfmtDNA in seminal plasma cannot predict the freezability of semen but can be used to predict in vitro embryo production.
Collapse
Affiliation(s)
- Margot A N Dode
- Institute of Biology, University of Brasilia, Brasília, DF, Brazil.
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil.
| | - Natalia Capobianco
- Institute of Biology, University of Brasilia, Brasília, DF, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Luna Nascimento Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Bruna Mion
- Department of Animal Science, University of Guelph, Guelph, ON, Canada
| | - Nayara Ribeiro Kussano
- Institute of Biology, University of Brasilia, Brasília, DF, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - José Felipe Spricigo
- School of Veterinary and Animal Science, Federal University of Goiás, Goiania, GO, Brazil
| | - Mauricio Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlandia, Minas Gerais, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
3
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Yang H, Kolben T, Kessler M, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Herbst C, Fink SG, Weimer G, Mahner S, Jeschke U, von Schönfeldt V. FAM111A Is a Novel Molecular Marker for Oocyte Aging. Biomedicines 2022; 10:257. [PMID: 35203468 PMCID: PMC8869572 DOI: 10.3390/biomedicines10020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is the main cause of decline in oocyte quality, which can further trigger the failure of assisted reproductive technology (ART). Exploring age-related genes in oocytes is an important way to investigate the molecular mechanisms involved in oocyte aging. To provide novel insight into this field, we performed a pooled analysis of publicly available datasets, using the overlapping results of two statistical methods on two Gene Expression Omnibus (GEO) datasets. The methods utilized in the current study mainly include Spearman rank correlation, the Wilcoxon signed-rank test, t-tests, Venn diagrams, Gene Ontology (GO), Protein-Protein Interaction (PPI), Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and receiver operating characteristic (ROC) curve analysis. We identified hundreds of age-related genes across different gene expression datasets of in vitro maturation-metaphase II (IVM-MII) oocytes. Age-related genes in IVM-MII oocytes were involved in the biological processes of cellular metabolism, DNA replication, and histone modifications. Among these age-related genes, FAM111A expression presented a robust correlation with age, seen in the results of different statistical methods and different datasets. FAM111A is associated with the processes of chromosome segregation and cell cycle regulation. Thus, this enzyme is potentially an interesting novel marker for the aging of oocytes, and warrants further mechanistic study.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Corinna Paul
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Julia van Dorp
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sibel Eren
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Cornelia Herbst
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sabine Gabriele Fink
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Gabriele Weimer
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| |
Collapse
|
5
|
Xiong X, Ma H, Min X, Su F, Xiong Y, Li J. Effects of demethylase KDM4B on the biological characteristics and function of yak cumulus cells in vitro. Theriogenology 2021; 174:85-93. [PMID: 34425304 DOI: 10.1016/j.theriogenology.2021.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 12/01/2022]
Abstract
The present study aims to investigate the expression and function of lysine-specific demethylase 4B (KDM4B) in yak cumulus cells (CCs) in order to reveal the mechanisms by which KDM4B regulates biological characteristics and function of CCs. The cellular location of KDM4B and the methylation pattern of H3K9 were detected using immunofluorescence (IF) staining in CCs. The mRNA expression levels of apoptosis-related genes (BCL-2, HAX1 and BAX) and genes related to the estrogen pathway (ESR2, CYP17 and 3B-HSD) were estimated by qRT-PCR after knockdown of KDM4B expression by siRNA in yak CCs. Then, a proliferation assay, Annexin V-FITC staining, and ELISA were utilized to explore the effects of KDM4B silencing on CCs proliferation, apoptosis, and estrogen (E2) secretion, respectively. The results showed that KDM4B is located in the nuclei of yak CCs and is distributed in a dotted pattern. Knockdown KDM4B induced a decrease in cell proliferation, an increase in apoptotic rate and a reduction in the levels of E2 secretion of CCs. Additionally, the methylation patterns of H3K9me2 and H3K9me3 were significantly increased in CCs transfected with KDM4B siRNA-1 (P < 0.05). The mRNA expression level of apoptosis promoting BAX genes was significantly upregulated, but 3B-HSD, ESR2 and anti-apoptotic HAX1 genes were significantly downregulated in transfected CCs (P < 0.05). Furthermore, the rate of embryos developing from the 2-cell stage to blastocysts was lower in the siRNA-1 transfection group than that of the control group (28.6 ± 2.9% vs 40.4 ± 2.4%, P < 0.05). In conclusion, our study indicates that KDM4B regulates the biological characteristics and physiological function of yak CCs mainly through changing the methylation patterns of H3K9 and related gene expression levels.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Hongchen Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xinyu Min
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Feng Su
- College of Animal Science and Veterinary Medicine, Shandong Agriculture University, Taian, Shangdong, 271018, PR China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|