1
|
Camacho-Ortiz A, Flores-Treviño S, Bocanegra-Ibarias P. Prevalence of difficult-to-treat resistance in ESKAPE pathogens in a third level hospital in Mexico. Infect Prev Pract 2025; 7:100426. [PMID: 39758683 PMCID: PMC11699456 DOI: 10.1016/j.infpip.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Background Antimicrobial resistance and difficult-to-treat resistance (DTR) in ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) is a threat to human health. The aim of this study was to determine the prevalence of antimicrobial resistance and DTR rates in ESKAPE pathogens over six years in a third-level hospital from Monterrey, Mexico. Methods Antimicrobial susceptibility testing was determined by either disk diffusion or broth microdilution in strains from 2018 to 2023. Isolates were screened for carbapenemase genes. Multidrug resistance (MDR), extensively drug resistance (XDR), carbapenem resistance (CR), extended-spectrum cephalosporin-resistance (ESCR), fluoroquinolone resistance (FQR), and DTR were determined. Results From 3,239 strains, 48.5% were from respiratory infections, resistance was 87.5% to meticillin in Staphylococcus spp. and 39.8% in S. aureus, and 13.9% to vancomycin in Enterococcus spp. MDR, FQR and ESCR rates were between 54-90% in A. baumannii, 20-60% in Enterobacterales and 17-25% in P. aeruginosa. CR was 85.7% in A. baumannii, 33.3% in P. aeruginosa and <5% in Enterobacterales. Most frequent CR genes were OXA-24/40-like in A. baumannii and NDM and OXA-48 in carbapenem-resistant Enterobacterales. DTR rates were 59.7% in A. baumannii (49.2% in 2018 vs 62.9% in 2023), 8.9% in P. aeruginosa and <3% in Enterobacterales. XDR in A. baumannii was 14.4%. Conclusions Antimicrobial resistance rates were high in Gram-negative pathogens. CR and DTR rates were higher in A. baumannii than P. aeruginosa and Enterobacterales. DTR surveillance in healthcare providers should be continuous updating local and regional DTR trends among Gram-negative bacteria.
Collapse
Affiliation(s)
- Adrián Camacho-Ortiz
- Department of Infectious Diseases, Hospital Universitario “Dr. José E. González” y Facultad de Medicina, Universidad Autónoma de Nuevo León, Mitras Centro, Monterrey, Nuevo León, CP 64460, México
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, Hospital Universitario “Dr. José E. González” y Facultad de Medicina, Universidad Autónoma de Nuevo León, Mitras Centro, Monterrey, Nuevo León, CP 64460, México
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, Hospital Universitario “Dr. José E. González” y Facultad de Medicina, Universidad Autónoma de Nuevo León, Mitras Centro, Monterrey, Nuevo León, CP 64460, México
| |
Collapse
|
2
|
Somda NS, Nyarkoh R, Kotey FCN, Tetteh-Quarcoo PB, Donkor ES. A systematic review and meta-analysis of carbapenem-resistant Enterobacteriaceae in West Africa. BMC Med Genomics 2024; 17:267. [PMID: 39533268 PMCID: PMC11555847 DOI: 10.1186/s12920-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In Africa, the problem of carbapenem-resistant Enterobacteriaceae (CRE) is aggravated by many factors. This systematic review attempted to describe the current status of the molecular epidemiology of carbapenem resistance in West Africa (WA). METHODS Articles published from 16 West African countries on the molecular epidemiology of carbapenem resistance were reviewed. An extensive literature search was carried out in PubMed, Scopus, Web of Science, and African Journals Online (AJOL) using specific keywords. The meta-analysis and forest plots of major pathogens and carbapenem resistance genes were done using the Open Meta-Analyst, Task Order # 2 software. The data were analysed in binary random model effects by the DerSimonian-Laird method at a 95% confidence interval. RESULTS Of the 431 articles found in our initial search, 60 (13.92%) were considered suitable for inclusion. Only seven of the 16 West African countries formed part of the analysis, Nigeria (23/60), Ghana (19/60), Burkina Faso (7/60), Senegal (6/60), Benin (2/60), Mali (2/60), and Togo (1/60). Also, 80% (48/60) of the studies used clinical samples, 16.67% (10/60) used environmental samples, and 3.33% (2/60) used animal samples. The average prevalence was highest in Acinetobacter baumannii (18.6%; 95% CI = 14.0-24.6, I2 = 97.9%, p < 0.001), followed by Pseudomonas aeruginosa (6.5%; 95% CI = 3.1-13.4, I2 = 96.52%, p < 0.001), Klebsiella pneumoniae (5.8%; 95% CI = 4.2-7.9, I2 = 98.06%, p < 0.001) and Escherichia coli (4.1%; 95% CI = 2.2-7.7, I2 = 96.68%, p < 0.001). The average prevalence of the blaNDM gene was 10.6% (95% CI = 7.9-14.3, I2 = 98.2%, p < 0.001), followed by 3.9% (95% CI: 1.8-8.3, I2 = 96.73%, p < 0.001) for blaVIM and 3.1% (95% CI: 1.7-5.8, I2 = 91.69%, p < 0.001) for blaOXA-48. CONCLUSION In West Africa, K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa are the main CRE with blaNDM, blaVIM, and blaOXA-48 being the predominant carbapenem resistance genes. In view of these results, ongoing CRE surveillance combined with antimicrobial stewardship improved, laboratory detection methods, and adherence to infection control practices will be needed to control the spread of CRE.
Collapse
Affiliation(s)
- Namwin Siourimè Somda
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
3
|
Amra A, Debabza M, Dziri R, Mechai A, Ouzari HI, Klibi N. Enterobacterales Producing ESBLs and AmpC in Fresh Vegetables from Tebessa City, Algeria. Microb Drug Resist 2024; 30:458-467. [PMID: 39435552 DOI: 10.1089/mdr.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
This study aimed to evaluate the contamination levels of fresh products by ESBLs-producing Enterobacterales (ESBLs-E) or AmpC-producing Enterobacterales and characterize ESBLs genes. A total of 132 samples (67 vegetables and 65 fruits) were collected from markets in Tebessa, eastern Algeria. Among the samples, 16 third-generation cephalosporin-resistant Enterobacterales isolates were identified with a prevalence of 19.40% in vegetable samples, while there was no positive finding in fruit samples. Isolates showed resistance to most β-lactams, and all of them displayed multidrug resistance. Phenotypic tests for ESBLs detection, using double-disk synergy test and double-disk test were positive for 14 strains, including Klebsiella pneumoniae (n = 5), Klebsiella oxytoca (n = 4), Klebsiella terrigena (n = 2), Kluyvera spp. (n = 2), and Enterobacter cloacae (n = 1). Two AmpC-producing strains (Citrobacter freundii and E. cloacae) were identified through the AmpC disk test. Contamination rates of vegetables by ESBLs-E and AmpC-producing Enterobacterales were 19.40% and 2.98%, respectively. PCR results showed the presence of at least one ESBL gene in seven selected strains, with the dominance of blaCTX-M gene. Notably, K. pneumoniae strains showed the co-occurrence of two or three genes. Sequencing identified uncommon variants of ESBLs genes for the first time in Algeria, including blaCTX-M-79 (2/7), blaCTX-M-107 (2/7), blaCTX-M-117 (2/7), blaTEM-112 (1/7), blaTEM-125 (2/7), blaTEM-194 (1/7), and blaSHV-176 (3/7).
Collapse
Affiliation(s)
- Amel Amra
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Manel Debabza
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelbasset Mechai
- Bioactive Molecules and Applications Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University (E.C.L.T.U.), Tebessa, Algeria
| | - Hadda Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Naouel Klibi
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Fuentes-González MF, Fernández-Rodríguez D, Colín-Castro CA, Hernández-Durán M, López-Jácome LE, Franco-Cendejas R. Gram-Negative Bacilli Blood Stream Infection in Patients with Severe Burns: Microbiological and Clinical Evidence from a 9-Year Cohort. Int J Mol Sci 2024; 25:10458. [PMID: 39408787 PMCID: PMC11476612 DOI: 10.3390/ijms251910458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Bloodstream infection is one of the most important and increasing complications in patients with severe burns. Most of the species affecting this population are Gram-negative bacilli that exhibit antimicrobial resistance. We conducted this study to determine the antimicrobial susceptibility profile and resistance mechanisms of these bacterial infections and their clinical associations on morbidity and mortality. We analyzed a retrospective cohort of burn patients. All patients included in this study had monobacterial blood stream infections during their hospital stay. We performed phenotypic and genotypic tests to determine the antimicrobial resistance mechanism and profile of each strain. Univariate and multivariate logistic regression analysis was performed between variables. We found 109 patients with monobacterial bacteremia. Pseudomonas spp. (50.7%), A. baumannii (46.4%), and Klebsiella spp. (13.8%) were the most common causative microorganisms. The Pseudomonas spp. isolates showed resistance to imipenem (81.5%), mainly by class A and class B carbapenemases. The A. baumannii isolates conferred resistance to imipenem (56.2%), mainly by class D carbapenemases. One quarter of Klebsiella spp. showed resistance to 3rd generation cephalosporins. We also observed that a total body surface area greater than 40% and three or more different types of invasive procedures might be related to increased mortality. Multidrug resistance is highly present. The extent of the burned area and a high number of different types of invasive procedures had an impact in decreasing survivorship in burn patients with bacteremia.
Collapse
Affiliation(s)
| | - Diana Fernández-Rodríguez
- Clinical Microbiology Laboratory, Infectious Diseases Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (D.F.-R.); (C.A.C.-C.); (M.H.-D.)
- Plan de Estudios Combinados en Medicina (PECEM) Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Claudia A. Colín-Castro
- Clinical Microbiology Laboratory, Infectious Diseases Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (D.F.-R.); (C.A.C.-C.); (M.H.-D.)
| | - Melissa Hernández-Durán
- Clinical Microbiology Laboratory, Infectious Diseases Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (D.F.-R.); (C.A.C.-C.); (M.H.-D.)
| | - Luis Esaú López-Jácome
- Clinical Microbiology Laboratory, Infectious Diseases Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (D.F.-R.); (C.A.C.-C.); (M.H.-D.)
- Biology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| |
Collapse
|
5
|
Bastida-Ramírez LJ, Buendía-González L, Mejía-Argueta EL, Sandoval-Cabrera A, García-Fabila MM, Pavón-Romero SH, Padua-Ahumada M, Santillán-Benítez JG. Lippia origanoides and Thymus vulgaris Essential Oils Synergize with Ampicillin against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli. Microorganisms 2024; 12:1702. [PMID: 39203544 PMCID: PMC11357574 DOI: 10.3390/microorganisms12081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: Could compounds such as monoterpenes and sesquiterpenes present in essential plant oils inhibit bacterial growth as an alternative to help mitigate bacterial resistance? The purpose of this study is evaluating the in vitro antibacterial effect of Lippia organoides EO (LEO) and Thymus vulgaris EO (TEO), individually and in combination with ampicillin, against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains; (2) Methods: Experimental in vitro design with post-test. The EOs were obtained by hydrodistillation and were analyzed by GC. ESBL-producing E. coli strains used were selected from urine cultures and the blaCTX-M and blaTEM resistance genes were identified by end point PCR. The disk diffusion method was used for the susceptibility tests. The MICs and MBCs were determined by microdilution test. Finally, the interaction effect was observed by checkerboard assay; (3) Results: A 39.9% decrease in the growth of the strain thymol in TEO and 70.4% in carvacrol in LEO was shown, observing inhibition halos of 32 mm for both EOs. MICs of 632 and 892 μg/mL for LEO and 738 and 940 μg/mL for TEO were determined. Finally, it was observed that, at low doses, there is a synergistic effect between TEO + LEO and EOs + ampicillin; (4) Conclusions: The findings demonstrate that TEO and LEO have an inhibitory effect on ESBL-producing E. coli, suggesting that they are candidates for further studies in the formulation of antibiotics to reduce bacterial resistance to traditional antibiotics.
Collapse
Affiliation(s)
- Levi Jafet Bastida-Ramírez
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca C.P. 50120, Mexico; (L.J.B.-R.); (E.L.M.-A.); (M.M.G.-F.); (S.H.P.-R.)
| | | | - Euridice Ladisu Mejía-Argueta
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca C.P. 50120, Mexico; (L.J.B.-R.); (E.L.M.-A.); (M.M.G.-F.); (S.H.P.-R.)
| | - Antonio Sandoval-Cabrera
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca C.P. 50180, Mexico;
- Laboratorio de Alta Especialidad Hemato-Oncología, Hospital para el Niño, Instituto Materno Infantil del Estado de México, Toluca C.P. 50170, Mexico
| | - María Magdalena García-Fabila
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca C.P. 50120, Mexico; (L.J.B.-R.); (E.L.M.-A.); (M.M.G.-F.); (S.H.P.-R.)
| | - Sergio Humberto Pavón-Romero
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca C.P. 50120, Mexico; (L.J.B.-R.); (E.L.M.-A.); (M.M.G.-F.); (S.H.P.-R.)
| | | | | |
Collapse
|
6
|
Ballesteros-Monrreal MG, Mendez-Pfeiffer P, Ortíz B, Bolado-Martínez E, Álvarez-Ainza ML, Enciso-Martínez Y, Arenas-Hernández MMP, Diaz-Murrieta B, Barrios-Villa E, Valencia D. Uropathogenic E. coli and Hybrid Pathotypes in Mexican Women with Urinary Tract Infections: A Comprehensive Molecular and Phenotypic Overview. Curr Issues Mol Biol 2024; 46:5909-5928. [PMID: 38921024 PMCID: PMC11202577 DOI: 10.3390/cimb46060353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum β-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of β-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.
Collapse
Affiliation(s)
- Manuel G. Ballesteros-Monrreal
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Pablo Mendez-Pfeiffer
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Bryan Ortíz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras;
| | - Enrique Bolado-Martínez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico; (E.B.-M.); (M.L.Á.-A.)
| | - Maritza Lizeth Álvarez-Ainza
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo CP 83000, Sonora, Mexico; (E.B.-M.); (M.L.Á.-A.)
| | - Yessica Enciso-Martínez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla CP 72570, Pue, Mexico
| | - Betsaida Diaz-Murrieta
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Edwin Barrios-Villa
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| | - Dora Valencia
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca CP 83621, Sonora, Mexico; (M.G.B.-M.); (P.M.-P.); (Y.E.-M.); (B.D.-M.)
| |
Collapse
|
7
|
Correa-León YP, Pérez-Hernández JM, Martinez-Guerra BA, Rodríguez-Noriega E, Mena-Ramírez JP, López-Gutiérrez E, López-Jácome LE, Monroy-Colin VA, Mireles-Davalos CD, Padilla-Ibarra C, Quevedo-Ramos MA, Feliciano-Guzmán JM, Pérez-Vicelis T, Velázquez-Acosta MDC, Hernández-Durán M, Garza-González E. Evaluation of the BD Phoenix Carbapenemase-Producing Organism Panels for the Detection of Carbapenemase Producers in Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Diagnostics (Basel) 2023; 13:3417. [PMID: 37998553 PMCID: PMC10670751 DOI: 10.3390/diagnostics13223417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The classification of carbapenemases can help guide therapy. The present study evaluated the performance of the CPO detection test, included in the BD Phoenix™ NMIC-501 panel for the detection and classification of carbapenemases on the representative molecularly characterized strains collection from Mexico. Carbapenem non-susceptible isolates collected in Mexico were included. The clinical isolates (n = 484) comprised Klebsiella pneumoniae (n = 154), Escherichia coli (n = 150), and P. aeruginosa (n = 180). BD Phoenix CPO NMIC-504 and NMIC-501 panels were used for the identification of species, antimicrobial susceptibility tests, and detection of CPOs. For the detection of carbapenemase-encoding genes, E. coli and K. pneumoniae were evaluated using PCR assays for blaNDM-1, blaKPC, blaVIM, blaIMP, and blaOXA-48-like. For P. aeruginosa, blaVIM, blaIMP, and blaGES were detected using PCR. Regarding E. coli, the CPO panels had a sensitivity of 70% and specificity of 83.33% for the detection of a class B carbapenemase (blaNDM in the molecular test). Regarding K. pneumoniae, the panels had a sensitivity of 75% and specificity of 100% for the detection of a class A carbapenemase (blaKPC in the molecular test). The Phoenix NMIC-501 panels are reliable for detecting class B carbapenemases in E. coli. The carbapenemase classification in K. pneumoniae for class A carbapenemases has a high specificity and PPV; thus, a positive result is of high value.
Collapse
Affiliation(s)
- Yoselin Paola Correa-León
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico; (Y.P.C.-L.); (J.M.P.-H.)
| | - José Miguel Pérez-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico; (Y.P.C.-L.); (J.M.P.-H.)
| | | | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara, Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico;
| | - Juan Pablo Mena-Ramírez
- Laboratorio de Microbiología, Hospital General de Zona No. 21 IMSS Tepatitlán de Morelos, Jalisco, Centro Universitario de los Altos (Cualtos), Universidad de Guadalajara, Guadalajara 47630, Mexico;
| | - Eduardo López-Gutiérrez
- Laboratorio de Microbiología, Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca de Juárez 71256, Mexico;
| | - Luis Esaú López-Jácome
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico (M.H.-D.)
| | | | - Christian Daniel Mireles-Davalos
- Laboratorio de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Cecilia Padilla-Ibarra
- Laboratorio de Microbiología, Hospital General del Estado de Sonora, Hermosillo 83249, Mexico;
| | | | | | - Talía Pérez-Vicelis
- Laboratorio de Microbiología, Hospital Regional de Alta Especialidad Bicentenario de la Independencia, Tultitlan 54916, Mexico;
| | | | - Melissa Hernández-Durán
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico (M.H.-D.)
| | - Elvira Garza-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico; (Y.P.C.-L.); (J.M.P.-H.)
| |
Collapse
|
8
|
Martínez-Zavaleta MG, Fernández-Rodríguez D, Hernández-Durán M, Colín-Castro CA, de Lourdes García-Hernández M, Becerra-Lobato N, Franco-Cendejas R, López-Jácome LE. Acquired blaVIM and blaGES Carbapenemase-Encoding Genes in Pseudomonas aeruginosa: A Seven-Year Survey Highlighting an Increasing Epidemiological Threat. Pathogens 2023; 12:1256. [PMID: 37887772 PMCID: PMC10610504 DOI: 10.3390/pathogens12101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: Pseudomonas aeruginosa is a Gram-negative bacterium with several intrinsic and acquired antimicrobial resistance mechanisms. The spread of carbapenemase-encoding genes, an acquired mechanism, enables carbapenem resistance in clinical settings. Detection of the carbapenemase-producer strains is urgent. Therefore, we aimed to characterize carbapenemase production in the clinical strains of P. aeruginosa at a tertiary-care center. (2) Methods: We included clinical strains of P. aeruginosa (from August 2011 to December 2018) with resistance towards at least one carbapenem. Strains were isolated in a tertiary-care center in Mexico City. Antimicrobial susceptibility profiles were determined by broth microdilution. Screening for carbapenemase-encoding genes was performed in all strains. Phenotypic assays (CarbaNP and mCIM) were conducted. Additional modifications to mCIM were also tested. (3) Results: One-hundred seventy-one P. aeruginosa strains out of 192 included in this study were resistant towards at least one of the carbapenems tested. Forty-seven of these strains harbored a carbapenemase-encoding gene. VIM (59.6%) and GES (23.4%) were the most frequently found carbapenemases in our study, followed by IMP (14.9%). (4) Among the most frequent carbapenemase genes identified, metallo-ß-lactamases were the most prevalent, which impair new treatment options. Searching for carbapenemase genes should be performed in resistant isolates to stop transmission and guide antimicrobial treatment.
Collapse
Affiliation(s)
- María Guadalupe Martínez-Zavaleta
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
| | - Diana Fernández-Rodríguez
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
- Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Av. Universidad 3000, Mexico City 04510, Mexico
| | - Melissa Hernández-Durán
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
| | - Claudia A. Colín-Castro
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
| | - María de Lourdes García-Hernández
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
| | - Noé Becerra-Lobato
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Research Direction, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico
| | - Luis Esaú López-Jácome
- Clinical Microbiology Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Calz, México-Xochimilco No. 289, Col. Arenal de Guadalupe, Mexico City 14389, Mexico; (M.G.M.-Z.); (D.F.-R.); (M.H.-D.); (C.A.C.-C.); (M.d.L.G.-H.); (N.B.-L.)
- Biology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Av. Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
9
|
Rojas-Larios F, Martínez-Guerra BA, López-Jácome LE, Bolado-Martínez E, Vázquez-Larios MDR, Velázquez-Acosta MDC, Romero-Romero D, Mireles-Dávalos CD, Quintana-Ponce S, Feliciano-Guzmán JM, Pérez-Hernandez JM, Correa-León YP, López-Gutiérrez E, Rodriguez-Noriega E, González-Díaz E, Choy-Chang EV, Mena-Ramírez JP, Monroy-Colín VA, Ponce-de-León-Garduño A, Alcaraz-Espejel M, Avilés-Benítez LK, Quintanilla-Cazares LJ, Ramírez-Alanís E, Barajas-Magallón JM, Padilla-Ibarra C, Ballesteros-Silva MB, Atanacio-Sixto NA, Morales-de-la-Peña CT, Galindo-Méndez M, Pérez-Vicelis T, Jacobo-Baca G, Moreno-Méndez MI, Mora-Pacheco MDLL, Gutiérrez-Brito M, Sánchez-Godínez XY, Navarro-Vargas NV, Mercado-Bravo LE, Delgado-Barrientos A, Santiago-Calderón MA, López-Ovilla I, Molina-Chavarria A, Rincón-Zuno J, Franco-Cendejas R, Miranda-Mauricio S, Márquez-Avalos IC, López-García M, Duarte-Miranda LS, Cetina-Umaña CM, Barroso-Herrera-Y-Cairo IE, López-Moreno LI, Garza-González E. Active Surveillance of Antimicrobial Resistance and Carbapenemase-Encoding Genes According to Sites of Care and Age Groups in Mexico: Results from the INVIFAR Network. Pathogens 2023; 12:1144. [PMID: 37764952 PMCID: PMC10537696 DOI: 10.3390/pathogens12091144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
We analyzed the antimicrobial resistance (AMR) data of 6519 clinical isolates of Escherichia coli (n = 3985), Klebsiella pneumoniae (n = 775), Acinetobacter baumannii (n = 163), Pseudomonas aeruginosa (n = 781), Enterococcus faecium (n = 124), and Staphylococcus aureus (n = 691) from 43 centers in Mexico. AMR assays were performed using commercial microdilution systems (37/43) and the disk diffusion susceptibility method (6/43). The presence of carbapenemase-encoding genes was assessed using PCR. Data from centers regarding site of care, patient age, and clinical specimen were collected. According to the site of care, the highest AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from ICU patients. In contrast, in A. baumannii, higher AMR was observed in isolates from hospitalized non-ICU patients. According to age group, the highest AMR was observed in the ≥60 years age group for E. coli, E. faecium, and S. aureus, and in the 19-59 years age group for A. baumannii and P. aeruginosa. According to clinical specimen type, a higher AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from blood specimens. The most frequently detected carbapenemase-encoding gene in E. coli was blaNDM (84%).
Collapse
Affiliation(s)
- Fabian Rojas-Larios
- Laboratorio de Microbiología, Hospital Regional Universitario de Colima, Colima 28040, Mexico
| | - Bernardo Alfonso Martínez-Guerra
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Luis Esaú López-Jácome
- Servicio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Enrique Bolado-Martínez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico
| | - María Del Rosario Vázquez-Larios
- Laboratorio de Microbiología, Servicio de Infectología y Microbiología Cínica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | | | - Christian Daniel Mireles-Dávalos
- Laboratorio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Sandra Quintana-Ponce
- Facultad de Ciencias Naturales, Universidad Autónoma de Guerrero, Chilpancingo 39000, Mexico
| | | | - José Miguel Pérez-Hernandez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico
| | - Yoselin Paola Correa-León
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico
| | - Eduardo López-Gutiérrez
- Área de Microbiología, Laboratorio Clínico, Hospital Regional de alta Especialidad de Oaxaca, Oaxaca 71256, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Patología Infecciosa y Experimental, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
| | - Esteban González-Díaz
- Instituto de Patología Infecciosa y Experimental, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Departamento de Medicina Preventiva, Hospital Civil de Guadalajara, Fray Antonio Alcalde, Guadalajara 44280, Mexico
| | - Elena Victoria Choy-Chang
- Departamento de Bacteriología, Hospital General de Zona No.1 IMSS "Nueva Frontera", Tapachula 30767, Mexico
| | - Juan Pablo Mena-Ramírez
- Laboratorio de Microbiología, Hospital General de Zona No. 21 IMSS, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Tepatitlán de Morelos 47630, Mexico
| | | | - Alfredo Ponce-de-León-Garduño
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | | | - Laura Karina Avilés-Benítez
- Laboratorio de Microbiología y Parasitología, Hospital Infantil de Morelia "Eva Sámano de López Mateos", Morelia 58253, Mexico
| | | | | | | | - Cecilia Padilla-Ibarra
- Laboratorio Clínico, Hospital General de Estado "Dr. Ernesto Ramos Bours", Hermosillo 83000, Mexico
| | | | | | | | | | - Talía Pérez-Vicelis
- Hospital Regional de Alta Especialidad Bicentenario de la Independencia, Tultitlán 54916, Mexico
| | - Guillermo Jacobo-Baca
- Centro Universitario de Salud, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico
| | | | | | | | | | | | | | | | | | - Ismelda López-Ovilla
- Hospital Chiapas Nos Une Dr. Jesús Gilberto Gómez Maza, Tuxtla Gutiérrez 29045, Mexico
| | | | - Joaquín Rincón-Zuno
- Instituto Materno Infantil del Estado de México, Toluca de Lerdo 50170, Mexico
| | - Rafael Franco-Cendejas
- Servicio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | | | - Maribel López-García
- Hospital de la Madre y el Niño Guerrerense, Chilpancingo de los Bravo 39075, Mexico
| | | | | | | | | | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 66460, Mexico
| |
Collapse
|
10
|
Nieto-Saucedo JR, López-Jacome LE, Franco-Cendejas R, Colín-Castro CA, Hernández-Duran M, Rivera-Garay LR, Zamarripa-Martinez KS, Mosqueda-Gómez JL. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics (Basel) 2023; 12:1295. [PMID: 37627715 PMCID: PMC10451683 DOI: 10.3390/antibiotics12081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacilli (CR-GNB) are a major public health concern. We aimed to evaluate the prevalence of CR-GNB and the frequency of carbapenemase-encoding genes in a tertiary referral center from El Bajio, Mexico. A cross-sectional study was conducted between January and October 2022; Gram-negative bacilli (GNB) were screened for in vitro resistance to at least one carbapenem. CR-GNB were further analyzed for carbapenemase-production through phenotypical methods and by real-time PCR for the following genes: blaKPC, blaGES, blaNDM, blaVIM, blaIMP, and blaOXA-48. In total, 37 out of 508 GNB were carbapenem-resistant (7.3%, 95% CI 5.2-9.9). Non-fermenters had higher rates of carbapenem resistance than Enterobacterales (32.5% vs. 2.6%; OR 18.3, 95% CI 8.5-39, p < 0.0001), and Enterobacter cloacae showed higher carbapenem resistance than other Enterobacterales (27% vs. 1.4%; OR 25.9, 95% CI 6.9-95, p < 0.0001). Only 15 (40.5%) CR-GNB had a carbapenemase-encoding gene; Enterobacterales were more likely to have a carbapenemase-encoding gene than non-fermenters (63.6% vs. 30.8%, p = 0.08); blaNDM-1 and blaNDM-5 were the main genes found in Enterobacterales; and blaIMP-75 was the most common for Pseudomonas aeruginosa. The mcr-2 gene was harbored in one polymyxin-resistant E. cloacae. In our setting, NDM was the most common carbapenemase; however, less than half of the CR-GNB showed a carbapenemase-encoding gene.
Collapse
Affiliation(s)
- Jose Raul Nieto-Saucedo
- Fellow of the General Directorate of Quality and Education in Health, Ministry of Health, Mexico City 06696, Mexico
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
| | - Luis Esaú López-Jacome
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Biology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Claudia Adriana Colín-Castro
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Melissa Hernández-Duran
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | | | - Juan Luis Mosqueda-Gómez
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
- Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico
| |
Collapse
|
11
|
Loyola-Cruz MÁ, Durán-Manuel EM, Cruz-Cruz C, Márquez-Valdelamar LM, Bravata-Alcántara JC, Cortés-Ortíz IA, Cureño-Díaz MA, Ibáñez-Cervantes G, Fernández-Sánchez V, Castro-Escarpulli G, Bello-López JM. ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. Am J Infect Control 2023; 51:729-737. [PMID: 36002081 PMCID: PMC9393108 DOI: 10.1016/j.ajic.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION A decrease of detection of outbreaks by multidrug-resistant bacteria in critical areas has been reduced due to COVID-19 pandemic. Therefore, molecular epidemiological surveillance should be a primary tool to reveal associations not evident by classical epidemiology. The aim of this work was to demonstrate the presence of hidden outbreaks in the first wave of the COVID-19 pandemic and to associate their possible origin. METHODS A population of 96 COVID-19 patients was included in the study (April to June 2020) from Hospital Juárez de México. Genetic identification and antimicrobial susceptibility testing of VAP causative agents isolated from COVID-19 patients was performed. Resistance phenotypes were confirmed by PCR. Clonal association of isolates was performed by analysis of intergenic regions obtained. Finally, the association of clonal cases of VAP patients was performed by timelines. RESULTS ESKAPE and non-ESKAPE bacteria were identified as causative agents of VAP. ESKAPE bacteria were classified as MDR and XDR. Only A. baumannii and P. aeruginosa were identified as clonally distributed in 13 COVID-19/VAP patients. Time analysis showed that cross-transmission existed between patients and care areas. CONCLUSIONS Acinetobacter baumannii and Pseudomonas aeruginosa were involved in outbreaks non-detected in COVID-19/VAP patients in the first wave of COVID-19 pandemic.
Collapse
Affiliation(s)
- Miguel Ángel Loyola-Cruz
- Hospital Juárez de México, Mexico City, Mexico; Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | | |
Collapse
|
12
|
Garza-Ramos U, Rodríguez-Medina N, Córdova-Fletes C, Rubio-Mendoza D, Alonso-Hernández CJ, López-Jácome LE, Morfín-Otero R, Rodríguez-Noriega E, Rojas-Larios F, Vázquez-Larios MDR, Ponce-de-Leon A, Choy-Chang EV, Franco-Cendejas R, Martinez-Guerra BA, Morales-de-La-Peña CT, Mena-Ramírez JP, López-Gutiérrez E, García-Romo R, Ballesteros-Silva B, Valadez-Quiroz A, Avilés-Benítez LK, Feliciano-Guzmán JM, Pérez-Vicelis T, Velázquez-Acosta MDC, Padilla-Ibarra C, López-Moreno LI, Corte-Rojas RE, Couoh-May CA, Quevedo-Ramos MA, López-García M, Chio-Ortiz G, Gil-Veloz M, Molina-Chavarria A, Mora-Domínguez JP, Romero-Romero D, May-Tec FJ, Garza-González E. Whole genome analysis of Gram-negative bacteria using the EPISEQ CS application and other bioinformatic platforms. J Glob Antimicrob Resist 2023; 33:61-71. [PMID: 36878463 DOI: 10.1016/j.jgar.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
OBJECTIVES To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.
Collapse
Affiliation(s)
| | | | | | - Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | | | | | - Rao Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Jalisco, Mexico
| | | | | | | | - Alfredo Ponce-de-Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
| | | | | | | | | | - Juan Pablo Mena-Ramírez
- Hospital General de Zona No. 21, IMSS. Centro Universitario de los Altos, Universidad de Guadalajara. Jalisco, Mexico
| | | | | | | | | | | | | | - Talia Pérez-Vicelis
- Hospital Regional de alta especialidad Bicentenario de la independencia, Estado de México, Mexico
| | | | | | | | | | | | | | | | | | - Mariana Gil-Veloz
- Hospital Regional de Alta Especialidad del Bajío, Guanajuato, Mexico
| | | | | | | | | | | |
Collapse
|
13
|
Garza-González E, Camacho-Ortiz A, Ponce-de-Leon A, Ortiz-Brizuela E, López-Jácome LE, Colin C, Rojas-Larios F, Newton-Sánchez OA, Echaniz-Aviles G, Carnalla-Barajas MN, Soto A, Bocanegra-Ibarias P, Hernández-Dueñas AMDR, Velázquez-Acosta MDC, Avilés-Benítez LK, Mena-Ramirez JP, Romero D, Mora-Jiménez I, Alcaraz-Espejel M, Feliciano-Guzmán JM, López-García M, Rodriguez-Zulueta P, Quevedo-Ramos MA, Padilla-Ibarra C, Couoh-May CA, Rivera-Ferreira MC, Morales-de-la-Peña CT, Zubiate H, Peralta-Catalán R, Cetina-Umaña CM, Rincón-Zuno J, Perez-Ricardez ML, Hernández-Cordova IY, López-Gutiérrez E, Gil M, Aguirre-Burciaga E, Huirache-Villalobos GS, Munoz S, Barlandas-Rendón NRE, Bolado-Martinez E, Quintanilla-Cazares LJ, Gómez-Choel AC, Lopez L, Tinoco JC, Martínez-Gamboa RA, Molina A, Escalante-Armenta SP, Duarte L, Ruiz-Gamboa LA, Cobos-Canul DI, López D, Barroso-Herrera-y-Cairo IE, Rodriguez-Noriega E, Morfin-Otero R. Bacterial incidence and drug resistance from pathogens recovered from blood, cerebrospinal and pleural fluids in 2019-2020. Results of the Invifar network. PeerJ 2023; 11:e14411. [PMID: 36684666 PMCID: PMC9854381 DOI: 10.7717/peerj.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Antimicrobial resistance is a global concern. Analysis of sterile fluids is essential because microorganisms are defined as significant in most cases. Blood, cerebrospinal, and pleural fluids are frequently received in the microbiology lab because they are associated with considerable rates of morbi-mortality. Knowledge of epidemiology in these samples is needed to choose proper empirical treatments due to the importance of reducing selection pressure. Methods We used retrospective laboratory data of blood, CSF, and pleural fluid collected from patients in Mexico between 2019 and 2020. Each laboratory identified the strains and tested susceptibility using its routine methods. For Streptococcus pneumoniae, a comparative analysis was performed with data from the broth microdilution method. Results Forty-five centers participated in the study, with 30,746 clinical isolates from blood, 2,429 from pleural fluid, and 2,275 from CSF. For blood and CSF, Staphylococcus epidermidis was the most frequent. For blood, among gram negatives, the most frequent was Escherichia coli. Among Enterobacterales, 9.8% of K. pneumoniae were carbapenem-resistant. For S. pneumoniae, similar resistance percentages were observed for levofloxacin, cefotaxime, and vancomycin. For CSF, the most frequent gram-negative was E. coli. In Acinetobacter baumannii, carbapenem resistance was 71.4%. The most frequent species detected for pleural fluid was E. coli; in A. baumannii, carbapenem resistance was 96.3%. Conclusion Gram-negative bacteria, with E. coli most prevalent, are frequently recovered from CSF, blood, and pleural fluid. In S. pneumoniae, the routine, conventional methods showed good agreement in detecting resistance percentages for erythromycin, levofloxacin, and vancomycin.
Collapse
Affiliation(s)
- Elvira Garza-González
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Adrian Camacho-Ortiz
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Alfredo Ponce-de-Leon
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Edgar Ortiz-Brizuela
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Claudia Colin
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Fabian Rojas-Larios
- Facultad de Medicina, Universidad de Colima and Hospital Regional Universitario de los Servicios de Salud del Estado de Colima, Colima, Mexico
| | - Oscar A. Newton-Sánchez
- Facultad de Medicina, Universidad de Colima and Hospital Regional Universitario de los Servicios de Salud del Estado de Colima, Colima, Mexico
| | | | | | - Araceli Soto
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | | | - Juan Pablo Mena-Ramirez
- Hospital General de Zona No.21 IMSS, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Guadalajara, Mexico
| | - Daniel Romero
- Análisis Bioquímico Clínicos “Louis Pasteur”, Toluca, Mexico
| | | | | | | | | | | | | | | | | | | | | | - Hector Zubiate
- Hospital General Lázaro Cárdenas, ISSSTE, Chihuahua, Mexico
| | | | | | | | | | | | | | - Mariana Gil
- Hospital Regional de Alta Especialidad del Bajío, Leon, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lizbeth Duarte
- Centro Integral de Atención a la Salud Sur ISSSTESON, Hermosillo, Mexico
| | | | | | - Dulce López
- Hospital Lic. Adolfo López Mateos, Ciudad Obregón, Mexico
| | | | - Eduardo Rodriguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
14
|
Mendez-Sotelo BJ, López-Jácome LE, Colín-Castro CA, Hernández-Durán M, Martínez-Zavaleta MG, Rivera-Buendía F, Velázquez-Acosta C, Rodríguez-Zulueta AP, Morfín-Otero MDR, Franco-Cendejas R. Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics (Basel) 2023; 12:antibiotics12010096. [PMID: 36671297 PMCID: PMC9855030 DOI: 10.3390/antibiotics12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The identification of carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa is important for treating and controlling hospital infections. The recommended methods for their identification require a long waiting time, technical training, and expertise. Lateral flow immunoassays such as NG-Test CARBA 5® overcome these needs. We analyzed 84 clinical isolates of carbapenem-resistant Enterobacterales and P. aeruginosa from four different hospitals in a two-year period. Antimicrobial resistance patterns were confirmed with the broth dilution method. Evaluation of KPC, VIM, NDM, IMP, and OXA-48-like enzymes was performed and compared to NG-Test CARBA 5 and phenotypic assays. Enterobacterales represented 69% of isolates and P. aeruginosa represented 31%. Carbapenemase-producing strains were 51 (88%) of Enterobacterales and 23 (88.4%) of P. aeruginosa; 20 (34%) and 23 (88%) were Class B ß-lactamases, respectively. The NG-Test CARBA 5® assay for Enterobacterales showed high sensitivity (98%), specificity (100%), and PPV (100%); however, it did not for P. aeruginosa. The Kappa concordance coefficient was 0.92 for Enterobacterales and 0.52 for P. aeruginosa. NG-Test CARBA 5® is a fast and easy-to-use assay. In Enterobacterales, we found excellent agreement in our comparison with molecular tests. Despite the low agreement in P. aeruginosa, we suggest that this test could be used as a complementary tool.
Collapse
Affiliation(s)
- Braulio Josue Mendez-Sotelo
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Luis Esaú López-Jácome
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Correspondence: (L.E.L.-J.); (R.F.-C.)
| | - Claudia A. Colín-Castro
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Melissa Hernández-Durán
- División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | - Frida Rivera-Buendía
- Oficina de Apoyo Sistemático para la Investigación Superior, Subdirección de Investigación Clínica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | | | - Maria del Rayo Morfín-Otero
- Infectología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara 44280, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Correspondence: (L.E.L.-J.); (R.F.-C.)
| |
Collapse
|
15
|
Prevalence of Antibiotic-Resistant E. coli Strains in a Local Farm and Packing Facilities of Honeydew Melon in Hermosillo, Sonora, Mexico. Antibiotics (Basel) 2022; 11:antibiotics11121789. [PMID: 36551446 PMCID: PMC9774811 DOI: 10.3390/antibiotics11121789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogenic strains of Escherichia coli threaten public health due to their virulence factors and antibiotic resistance. Additionally, the virulence of this bacterium varies by region depending on environmental conditions, agricultural practices, and the use of antibiotics and disinfectants. However, there is limited research on the prevalence of antibiotic-resistant E. coli in agriculture. Therefore, this research aimed to determine the antibiotic resistance of E. coli isolated from the Honeydew melon production system in Hermosillo, Sonora, Mexico. Thirty-two E. coli strains were isolated from 445 samples obtained from irrigation water, harvested melons, the hands of packaging workers, boxes, and discarded melons. The resistance profile of the E. coli strains was carried out to 12 antibiotics used in antimicrobial therapeutics against this bacterium; a high level of resistance to ertapenem (100%) was detected, followed by meropenem (97%), and ampicillin (94%); 47% of the strains were classified as multidrug-resistant. It was possible to identify the prevalence of the extended-spectrum β-lactamase (ESBLs) gene blaTEM (15.6%), as well as the non-ESBL genes qepA (3.1%) and aac(6')lb-cr (3.1%). The E. coli strains isolated from irrigation water were significantly associated with resistance to aztreonam, cefuroxime, amikacin, and sulfamethoxazole/trimethoprim. Irrigation water, packing workers' hands, and discarded melons showed a higher prevalence of antibiotic-resistant, ESBL, and non-ESBL genes of E. coli strains in a farm and packing facility of Honeydew melon in Hermosillo, Sonora.
Collapse
|
16
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
17
|
Hu J, Li J, Liu C, Zhang Y, Xie H, Li C, Shen H, Cao X. Molecular characteristics of global β-lactamase-producing Enterobacter cloacae by genomic analysis. BMC Microbiol 2022; 22:255. [PMID: 36266616 DOI: 10.1186/s12866-022-02667-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To analyze the characteristics of global β-lactamase-producing Enterobacter cloacae including the distribution of β-lactamase, sequence types (STs) as well as plasmid replicons. METHODS All the genomes of the E. cloacae were downloaded from GenBank. The distribution of β-lactamase encoding genes were investigated by genome annotation after the genome quality was checked. The STs of these strains were analyzed by multi-locus sequence typing (MLST). The distribution of plasmid replicons was further explored by submitting these genomes to the genome epidemiology center. The isolation information of these strains was extracted by Per program from GenBank. RESULTS A total of 272 out of 276 strains were found to carry β-lactamase encoding genes. Among them, 23 varieties of β-lactamase were identified, blaCMH (n = 130, 47.8%) and blaACT (n = 126, 46.3%) were the most predominant ones, 9 genotypes of carbapenem-hydrolyzing β-lactamase (CHβLs) were identified with blaVIM (n = 29, 10.7%) and blaKPC (n = 24, 8.9%) being the most dominant ones. In addition, 115 distinct STs for the 272 ß-lactamase-carrying E. cloacae and 48 different STs for 106 CHβLs-producing E. cloacae were detected. ST873 (n = 27, 9.9%) was the most common ST. Furthermore, 25 different plasmid replicons were identified, IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and IncFII (n = 62, 22.8%) were the most common ones. Notably, the distribution of plasmid replicons IncHI2 and IncHI2A among CHβLs-producing strains were significantly higher than theat among non-CHβLs-producing strains (p < 0.05). CONCLUSION Almost all the E. cloacae contained β-lactamase encoding gene. Among the global E. cloacae, blaCMH and blaACT were main blaAmpC genes. BlaTEM and blaCTX-M were the predominant ESBLs. BlaKPC, blaVIM and blaNDM were the major CHβLs. Additionally, diversely distinct STs and different replicons were identified.
Collapse
Affiliation(s)
- Jincao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
18
|
Rodríguez-Noriega E, Garza-González E, Bocanegra-Ibarias P, Paz-Velarde BA, Esparza-Ahumada S, González-Díaz E, Pérez-Gómez HR, Escobedo-Sánchez R, León-Garnica G, Morfín-Otero R. A case–control study of infections caused by Klebsiella pneumoniae producing New Delhi metallo-beta-lactamase-1: Predictors and outcomes. Front Cell Infect Microbiol 2022; 12:867347. [PMID: 35967868 PMCID: PMC9366880 DOI: 10.3389/fcimb.2022.867347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Infections caused by antimicrobial-resistant bacteria are a significant cause of death worldwide, and carbapenemase-producing bacteria are the principal agents. New Delhi metallo-beta-lactamase-1 producing Klebsiella pneumoniae (KP-NDM-1) is an extensively drug-resistant bacterium that has been previously reported in Mexico. Our aim was to conduct a case–control study to describe the risk factors associated with nosocomial infections caused by K. pneumoniae producing NDM-1 in a tertiary-care hospital in Mexico. Methods A retrospective case–control study with patients hospitalized from January 2012 to February 2018 at the Hospital Civil de Guadalajara “Fray Antonio Alcalde” was designed. During this period, 139 patients with a culture that was positive for K. pneumoniae NDM-1 (cases) and 486 patients hospitalized in the same department and on the same date as the cases (controls) were included. Data were analyzed using SPSS v. 24, and logistic regression analysis was conducted to calculate the risk factors for KP-NDM-1 infection. Results One hundred and thirty-nine case patients with a KP-NDM-1 isolate and 486 control patients were analyzed. In the case group, acute renal failure was a significant comorbidity, hospitalization days were extended, and significantly more deaths occurred. In a multivariate analysis of risk factors, the independent variables included the previous use of antibiotics (odds ratio, OR = 12.252), the use of a urinary catheter (OR = 5.985), the use of a central venous catheter (OR = 5.518), the use of mechanical ventilation (OR = 3.459), and the length of intensive care unit (ICU) stay (OR = 2.334) as predictors of infection with NDM-1 K. pneumoniae. Conclusion In this study, the previous use of antibiotics, the use of a urinary catheter, the use of a central venous catheter, the use of mechanical ventilation, and ICU stay were shown to be predictors of infection with NDM-1 K. pneumoniae and were independent risk factors for infection with NDM-1 K. pneumoniae.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Noriega
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | | | | | | | - Sergio Esparza-Ahumada
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Esteban González-Díaz
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Héctor R. Pérez-Gómez
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Rodrigo Escobedo-Sánchez
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Gerardo León-Garnica
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- *Correspondence: Rayo Morfín-Otero,
| |
Collapse
|
19
|
Surveillance of Antimicrobial Resistance in Hospital Wastewater: Identification of Carbapenemase-Producing Klebsiella spp. Antibiotics (Basel) 2022; 11:antibiotics11030288. [PMID: 35326752 PMCID: PMC8944648 DOI: 10.3390/antibiotics11030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the presence and persistence of carbapenemase-producing Klebsiella spp. isolated from wastewater and treated wastewater from two tertiary hospitals in Mexico. We conducted a descriptive cross-sectional study in two hospital wastewater treatment plants, which were sampled in February 2020. We obtained 30 Klebsiella spp. isolates. Bacterial identification was carried out by the Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS®) and antimicrobial susceptibility profiles were performed using the VITEK2® automated system. The presence of carbapenem resistance genes (CRGs) in Klebsiella spp. isolates was confirmed by PCR. Molecular typing was determined by pulsed-field gel electrophoresis (PFGE). High rates of Klebsiella spp. resistance to cephalosporins and carbapenems (80%) were observed in isolates from treated wastewater from both hospitals. The molecular screening by PCR showed the presence of blaKPC and blaOXA-48-like genes. The PFGE pattern separated the Klebsiella isolates into 19 patterns (A–R) with three subtypes (C1, D1, and I1). Microbiological surveillance and identification of resistance genes of clinically important pathogens in hospital wastewater can be a general screening method for early determination of under-detected antimicrobial resistance profiles in hospitals and early warning of outbreaks and difficult-to-treat infections.
Collapse
|
20
|
Bacterial Morphotypes as Important Trait for Uropathogenic E. coli Diagnostic; a Virulence-Phenotype-Phylogeny Study. Microorganisms 2021; 9:microorganisms9112381. [PMID: 34835506 PMCID: PMC8621242 DOI: 10.3390/microorganisms9112381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Urinary tract infections (UTIs) belong to the most common pathologies in Mexico and are mainly caused by Uropathogenic Escherichia coli (UPEC). UPEC possesses a wide diversity of virulence factors that allow it to carry out its pathogenesis mechanism in the urinary tract (UT). The development of morphotypes in UT represents an important feature of UPEC because it is associated with complications in diagnosis of UTI. The aim of this study was to determine the presence of bacterial morphotypes, virulence genes, virulence phenotypes, antibiotic resistant, and phylogenetic groups in clinical isolates of UPEC obtained from women in Sonora, Mexico. Forty UPEC isolates were obtained, and urine morphotypes were observed in 65% of the urine samples from where E. coli was isolated. Phylogenetic group B2 was the most prevalent. The most frequent virulence genes were fimH (100%), fliCD (90%), and sfaD/focC (72%). Biofilm formation (100%) and motility (98%) were the most prevalent phenotypes. Clinical isolates showed high resistance to aminoglycosides and β-lactams antibiotics. These data suggest that the search for morphotypes in urine sediment must be incorporated in the urinalysis procedure and also that clinical isolates of UPEC in this study can cause upper, lower, and recurrent UTI.
Collapse
|
21
|
Zumaya-Estrada FA, Ponce-de-León-Garduño A, Ortiz-Brizuela E, Tinoco-Favila JC, Cornejo-Juárez P, Vilar-Compte D, Sassoé-González A, Saturno-Hernandez PJ, Alpuche-Aranda CM. Point Prevalence Survey of Antimicrobial Use in Four Tertiary Care Hospitals in Mexico. Infect Drug Resist 2021; 14:4553-4566. [PMID: 34754203 PMCID: PMC8572044 DOI: 10.2147/idr.s327721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To describe the antimicrobial use in four tertiary care hospitals in Mexico. PATIENTS AND METHODS Point prevalence surveys (PPSs) were conducted on medical records of hospitalized patients with prescribed antimicrobials (AMs) in four tertiary care hospitals in Mexico in 2019. Prevalence estimates and descriptive statistics were used to present the collected data on antimicrobial prescribing and microbiological studies. RESULTS The prevalence of patients with prescribed AMs among the hospitals ranged from 47.1% to 91.3%. Antibiotics for systemic use (J01s) were the most prescribed (84.6%, [95% CI: 81.5-87.3]), mainly extended-spectrum J01s: third-generation cephalosporins 19.8% [95% CI: 16.8-23.1], and carbapenems 17.0% [95% CI: 14.2-20.2]. Antibiotic treatments were largely empirical, with no planned duration or review dates. The ceftriaxone use was excessive and prolonged. No formal reference guidelines for antimicrobial prescribing were available in the hospitals. Multidrug-resistant Escherichia coli and ESKAPE pathogens were identified in all hospitals. CONCLUSION This study describes the extensive use of antimicrobials and broad-spectrum antibiotics for systemic use in Mexican hospitals, along with the presence of resistant pathogens to the antibiotics frequently used in the hospitals surveyed.
Collapse
Affiliation(s)
- Federico A Zumaya-Estrada
- Center for Infectious Diseases Research (CISEI), National Institute of Public Health (INSP), Cuernavaca, C.P. 62100, Morelos, México
| | - Alfredo Ponce-de-León-Garduño
- Infectology Department, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Ciudad de México, C.P. 14080, México
| | - Edgar Ortiz-Brizuela
- Infectology Department, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Ciudad de México, C.P. 14080, México
| | - Juan Carlos Tinoco-Favila
- Infectology Department, Hospital General 450, Secretary of Health of Durango, Durango, C.P. 34206, Durango, México
| | - Patricia Cornejo-Juárez
- Infectious Diseases Department, National Institute of Cancer (INCan), Ciudad de México, C.P. 14080, México
| | - Diana Vilar-Compte
- Infectious Diseases Department, National Institute of Cancer (INCan), Ciudad de México, C.P. 14080, México
| | - Alejandro Sassoé-González
- Epidemiological Intelligence Unit, High Specialty Regional Hospital of Ixtapaluca, Estado de México, C.P. 56530, México
| | - Pedro Jesus Saturno-Hernandez
- Center for Evaluation and Surveys Research (CIEE), National Institute of Public Health (INSP), Cuernavaca, C.P. 62100, Morelos, México
| | - Celia M Alpuche-Aranda
- Center for Infectious Diseases Research (CISEI), National Institute of Public Health (INSP), Cuernavaca, C.P. 62100, Morelos, México
| |
Collapse
|