1
|
Rodrigues de Almeida A, Jaime Bezerra Mendonça Junior F, Tavares Dantas A, Eduarda de Oliveira Gonçalves M, Chêne C, Jeljeli M, Chouzenoux S, Thomas M, David de Azevedo Valadares L, Andreza Bezerra Correia M, Ângela da Silva Alves W, Carvalho Lira E, Doridot L, Jesus Barreto de Melo Rêgo M, Cristiny Pereira M, Luzia Branco Pinto Duarte A, Saes Parra Abdalla D, Nicco C, Batteux F, Galdino da Rocha Pitta M. IBPA a mutual prodrug of ibuprofen and acetaminophen alleviates inflammation, immune dysregulation and fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 2024; 136:112344. [PMID: 38833846 DOI: 10.1016/j.intimp.2024.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune illness with a wide range of clinical symptoms, including vascular abnormalities, inflammation, and persistent and progressive fibrosis. The disease's complicated pathophysiology makes it difficult to develop effective therapies, necessitating research into novel therapeutic options. Molecular hybridization is a strategy that can be used to develop new drugs that act on two or multiple targets and represents an interesting option to be explored for the treatment of complex diseases. We aimed to evaluate the effects of a hybrid mutual prodrug of ibuprofen and acetaminophen (IBPA) in peripheral blood mononuclear cells (PBMC) isolated from SSc patients, and in an in vivo model of SSc induced in BALB/c mice by intradermal injections of hypochlorous acid (HOCl) for 6 weeks. The mice were treated at the same time with daily intraperitoneal injections of IBPA (40 mg/kg). Pulmonary and skin fibrosis as well as immune responses were evaluated. IBPA significantly decreased the release of cytokines in PBMC culture supernatants from SSc patients after stimulation with phytohemagglutinin-M (IL-2, IL-4, IL-6, IL-10, IL-13, IL-17A, TNF and IFN-γ).In HOCl-induced SSc, IBPA treatment prevented dermal and pulmonary fibrosis, in addition to reducing CD4 + T and B cells activation and reversing the M2 polarization of macrophages in spleen cells, and inhibiting IFN-γ secretion in splenocyte cultures. These results show the anti-inflammatory and antifibrotic effects of IBPA in SSc and highlight the therapeutic potential of this mutual prodrug, providing support for future studies.
Collapse
Affiliation(s)
- Anderson Rodrigues de Almeida
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil; Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Francisco Jaime Bezerra Mendonça Junior
- Laboratório de Síntese e Vetorização de Moléculas, Departamento de Ciências Biológicas, Centro de Ciências Biológicas e Sociais Aplicadas, Universidade Estadual da Paraíba, João Pessoa, PB, Brazil
| | - Andréa Tavares Dantas
- Serviço de Reumatologia, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria Eduarda de Oliveira Gonçalves
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Charlotte Chêne
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Mohamed Jeljeli
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | | | - Marine Thomas
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | | | - Maria Andreza Bezerra Correia
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Eduardo Carvalho Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ludivine Doridot
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | | | - Dulcineia Saes Parra Abdalla
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carole Nicco
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Frédéric Batteux
- Université Paris Cité, Institut Cochin, Inserm, CNRS, Paris, France
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
2
|
Ahmed F, Samantasinghar A, Bae MA, Choi KH. Integrated ML-Based Strategy Identifies Drug Repurposing for Idiopathic Pulmonary Fibrosis. ACS OMEGA 2024; 9:29870-29883. [PMID: 39005763 PMCID: PMC11238209 DOI: 10.1021/acsomega.4c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) affects an estimated global population of around 3 million individuals. IPF is a medical condition with an unknown cause characterized by the formation of scar tissue in the lungs, leading to progressive respiratory disease. Currently, there are only two FDA-approved small molecule drugs specifically for the treatment of IPF and this has created a demand for the rapid development of drugs for IPF treatment. Moreover, denovo drug development is time and cost-intensive with less than a 10% success rate. Drug repurposing currently is the most feasible option for rapidly making the drugs to market for a rare and sporadic disease. Normally, the repurposing of drugs begins with a screening of FDA-approved drugs using computational tools, which results in a low hit rate. Here, an integrated machine learning-based drug repurposing strategy is developed to significantly reduce the false positive outcomes by introducing the predock machine-learning-based predictions followed by literature and GSEA-assisted validation and drug pathway prediction. The developed strategy is deployed to 1480 FDA-approved drugs and to drugs currently in a clinical trial for IPF to screen them against "TGFB1", "TGFB2", "PDGFR-a", "SMAD-2/3", "FGF-2", and more proteins resulting in 247 total and 27 potentially repurposable drugs. The literature and GSEA validation suggested that 72 of 247 (29.14%) drugs have been tried for IPF, 13 of 247 (5.2%) drugs have already been used for lung fibrosis, and 20 of 247 (8%) drugs have been tested for other fibrotic conditions such as cystic fibrosis and renal fibrosis. Pathway prediction of the remaining 142 drugs was carried out resulting in 118 distinct pathways. Furthermore, the analysis revealed that 29 of 118 pathways were directly or indirectly involved in IPF and 11 of 29 pathways were directly involved. Moreover, 15 potential drug combinations are suggested for showing a strong synergistic effect in IPF. The drug repurposing strategy reported here will be useful for rapidly developing drugs for treating IPF and other related conditions.
Collapse
Affiliation(s)
- Faheem Ahmed
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Anupama Samantasinghar
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| | - Myung Ae Bae
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology, Daejeon 34114, Korea
| | - Kyung Hyun Choi
- Department
of Mechatronics Engineering, Jeju National
University, Jeju 63243, Republic
of Korea
| |
Collapse
|
3
|
Tiwari E, Porreca DS, Braverman AS, Holt-Bright L, Frara NA, Brown JM, Johnston BR, Bazarek SF, Hilliard BA, Mazzei M, Pontari MA, Yu D, Ruggieri MR, Barbe MF. Nerve transfer for restoration of lower motor neuron-lesioned bladder, urethral and anal sphincter function. Part 4: Effectiveness of the motor reinnervation. Am J Physiol Regul Integr Comp Physiol 2024; 326:R528-R551. [PMID: 38497126 PMCID: PMC11380993 DOI: 10.1152/ajpregu.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
In pilot work, we showed that somatic nerve transfers can restore motor function in long-term decentralized dogs. We continue to explore the effectiveness of motor reinnervation in 30 female dogs. After anesthesia, 12 underwent bilateral transection of coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. Twelve months postdecentralization, eight underwent transfer of obturator nerve branches to pelvic nerve vesical branches, and sciatic nerve branches to pudendal nerves, followed by 10 mo recovery (ObNT-ScNT Reinn). The remaining four were euthanized 18 mo postdecentralization (Decentralized). Results were compared with 18 Controls. Squat-and-void postures were tracked during awake cystometry. None showed squat-and-void postures during the decentralization phase. Seven of eight ObNT-ScNT Reinn began showing such postures by 6 mo postreinnervation; one showed a return of defecation postures. Retrograde dyes were injected into the bladder and urethra 3 wk before euthanasia, at which point, roots and transferred nerves were electrically stimulated to evaluate motor function. Upon L2-L6 root stimulation, five of eight ObNT-ScNT Reinn showed elevated detrusor pressure and four showed elevated urethral pressure, compared with L7-S3 root stimulation. After stimulation of sciatic-to-pudendal transferred nerves, three of eight ObNT-ScNT Reinn showed elevated urethral pressure; all showed elevated anal sphincter pressure. Retrogradely labeled neurons were observed in L2-L6 ventral horns (in laminae VI, VIII, and IX) of ObNT-ScNT Reinn versus Controls in which labeled neurons were observed in L7-S3 ventral horns (in lamina VII). This data supports the use of nerve transfer techniques for the restoration of bladder function.NEW & NOTEWORTHY This data supports the use of nerve transfer techniques for the restoration of bladder function.
Collapse
Affiliation(s)
- Ekta Tiwari
- School of Engineering, Brown University, Providence, Rhode Island, United States
- Center of Translational Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Danielle S Porreca
- Center of Translational Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
- Medical Doctor Program, Thomas Jefferson Research, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - Alan S Braverman
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Lewis Holt-Bright
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Nagat A Frara
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Stanley F Bazarek
- Department of Neurological Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Brendan A Hilliard
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Michael Mazzei
- Department of Trauma Surgery and General Surgery, LeHigh Valley Health Network, Allentown, Pennsylvania, United States
| | - Michel A Pontari
- Department of Urology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Michael R Ruggieri
- Center of Translational Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Mary F Barbe
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Karande S, Das B, Acharya SS, Kumar A, Patel H, Sharma A, Gupta M, Ahmad I, Bhandare V, Sharma K, Kundu CN, Patil C. Computational and in vitro screening validates the repositioning potential of Coxibs as anti-fibrotic agents. J Biomol Struct Dyn 2024:1-13. [PMID: 38433403 DOI: 10.1080/07391102.2024.2318655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-β plays a significant role in the progression and severity of IPF. The TGF-β receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-β1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-β1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Biswajit Das
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Anoop Kumar
- Department of Pharmacology, DPSRU, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ajay Sharma
- Department of Pharmacognosy, DPSRU, New Delhi, India
| | - Madhu Gupta
- Department of Pharmaceutics, DPSRU, New Delhi, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | | | | | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Chandragouda Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
5
|
Lambi AG, Morrell NT, Popoff SN, Benhaim P, Barbe MF. Let's Focus on the Fibrosis in Dupuytren Disease: Cell Communication Network Factor 2 as a Novel Target. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2023; 5:682-688. [PMID: 37790821 PMCID: PMC10543811 DOI: 10.1016/j.jhsg.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 10/05/2023] Open
Abstract
Dupuytren disease is a progressive, benign fibroproliferative disorder of the hands that can lead to debilitating hand contractures. Once symptomatic, treatment involves either surgical intervention, specifically fasciectomy or percutaneous needle aponeurotomy, or enzymatic degradation with clostridial collagenase. Currently, collagenase is the only pharmacotherapy that has been approved for the treatment of Dupuytren contracture. There is a need for a pharmacotherapeutic that can be administered to limit disease progression and prevent recurrence after treatment. Targeting the underlying fibrotic pathophysiology is critical. We propose a novel target to be considered in Dupuytren disease-cell communication network factor 2/connective tissue growth factor-an established mediator of musculoskeletal tissue fibrosis.
Collapse
Affiliation(s)
- Alex G. Lambi
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Surgery Division of Plastic Surgery, University of New Mexico School of Medicine, Albuquerque, NM
- Department of Surgery Plastic Surgery Section, New Mexico Veterans Affairs Health Science Center, Albuquerque, NM
| | - Nathan T. Morrell
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Prosper Benhaim
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Mary F. Barbe
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
6
|
Benfaremo D, Agarbati S, Mozzicafreddo M, Paolini C, Svegliati S, Moroncini G. Skin Gene Expression Profiles in Systemic Sclerosis: From Clinical Stratification to Precision Medicine. Int J Mol Sci 2023; 24:12548. [PMID: 37628728 PMCID: PMC10454358 DOI: 10.3390/ijms241612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis, also known as scleroderma or SSc, is a condition characterized by significant heterogeneity in clinical presentation, disease progression, and response to treatment. Consequently, the design of clinical trials to successfully identify effective therapeutic interventions poses a major challenge. Recent advancements in skin molecular profiling technologies and stratification techniques have enabled the identification of patient subgroups that may be relevant for personalized treatment approaches. This narrative review aims at providing an overview of the current status of skin gene expression analysis using computational biology approaches and highlights the benefits of stratifying patients upon their skin gene signatures. Such stratification has the potential to lead toward a precision medicine approach in the management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
7
|
Lambi AG, Popoff SN, Benhaim P, Barbe MF. Pharmacotherapies in Dupuytren Disease: Current and Novel Strategies. J Hand Surg Am 2023; 48:810-821. [PMID: 36935324 PMCID: PMC10440226 DOI: 10.1016/j.jhsa.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 03/21/2023]
Abstract
Dupuytren disease is a benign, progressive fibroproliferative disorder of the hands. To date, only one pharmacotherapy (clostridial collagenase) has been approved for use in Dupuytren disease. There is a great need for additional nonsurgical methods that can be used to either avoid the risks of invasive treatments or help minimize recurrence rates following treatment. A number of nonsurgical modalities have been discussed in the past and continue to appear in discussions among hand surgeons, despite highly variable and often poor or no long-term clinical data. This article reviews many of the pharmacotherapies discussed in the treatment of Dupuytren disease and novel therapies used in inflammation and fibrosis that offer potential treatment options.
Collapse
Affiliation(s)
- Alex G Lambi
- Department of Orthopedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM.
| | - Steven N Popoff
- Department of Orthopaedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Prosper Benhaim
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA
| | - Mary F Barbe
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
8
|
Li A, Chen JY, Hsu CL, Oyang YJ, Huang HC, Juan HF. A Single-Cell Network-Based Drug Repositioning Strategy for Post-COVID-19 Pulmonary Fibrosis. Pharmaceutics 2022; 14:pharmaceutics14050971. [PMID: 35631558 PMCID: PMC9147547 DOI: 10.3390/pharmaceutics14050971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Post-COVID-19 pulmonary fibrosis (PCPF) is a long-term complication that appears in some COVID-19 survivors. However, there are currently limited options for treating PCPF patients. To address this problem, we investigated COVID-19 patients’ transcriptome at single-cell resolution and combined biological network analyses to repurpose the drugs treating PCPF. We revealed a novel gene signature of PCPF. The signature is functionally associated with the viral infection and lung fibrosis. Further, the signature has good performance in diagnosing and assessing pulmonary fibrosis. Next, we applied a network-based drug repurposing method to explore novel treatments for PCPF. By quantifying the proximity between the drug targets and the signature in the interactome, we identified several potential candidates and provided a drug list ranked by their proximity. Taken together, we revealed a novel gene expression signature as a theragnostic biomarker for PCPF by integrating different computational approaches. Moreover, we showed that network-based proximity could be used as a framework to repurpose drugs for PCPF.
Collapse
Affiliation(s)
- Albert Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Jhih-Yu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei 106, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 106, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (H.-C.H.); (H.-F.J.)
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; (A.L.); (J.-Y.C.); (Y.-J.O.)
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
- Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (H.-C.H.); (H.-F.J.)
| |
Collapse
|