1
|
Wen J, Zhao M, Xiao Y, Li S, Hu W. OATP1A2 mediates Aβ 1-42 transport and may be a novel target for the treatment of Alzheimer's disease. Front Pharmacol 2024; 15:1443789. [PMID: 39600371 PMCID: PMC11588442 DOI: 10.3389/fphar.2024.1443789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with an unknown cause. Many studies have suggested that the imbalance between the clearance and accumulation of β-amyloid protein (Aβ) in the brain of AD patients is the main cause of AD development of AD. Meanwhile, drug transporters play a key role in the transport of drugs and endogenous substances in vivo as well as in the development of many diseases. Could they be related to the imbalance between Aβ clearance and accumulation? OATP1A2 is the most abundant subfamily of organic anion transporting polypeptides (OATPs) that transport amphipathic substrates. Its high bilateral expression in brain endothelial cells suggests it plays a crucial role in delivering drugs and neuroactive peptides to brain tissue. Could it also be involved in mediating the production and accumulation of Aβ in the central system? This could lead to an imbalance between Aβ clearance and accumulation, ultimately resulting in AD development. This hypothesis would be bold and novel in the field of science. In this study, we successfully established the OATP1A2-HEK293T transgenic cell model, and found that the uptake of Aβ1-42 by OATP1A2-HEK293T cells was significantly higher than that of NC-HEK293T control cells and human astrocytes by adding different concentrations of Aβ1-42 to the cells of each group, suggesting that OATP1A2 expressed in the human brain is involved in Aβ amyloid protein transport.
Collapse
Affiliation(s)
- Jinhua Wen
- Department of GCP/Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Menghua Zhao
- Department of GCP/Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuwei Xiao
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sihong Li
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Weiqiang Hu
- School of Pharmacy, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Tsoy A, Umbayev B, Kassenova A, Kaupbayeva B, Askarova S. Pathology of Amyloid-β (Aβ) Peptide Peripheral Clearance in Alzheimer's Disease. Int J Mol Sci 2024; 25:10964. [PMID: 39456746 PMCID: PMC11507512 DOI: 10.3390/ijms252010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although Alzheimer's disease (AD) is traditionally viewed as a central nervous system disorder driven by the cerebral accumulation of toxic beta-amyloid (Aβ) peptide, new interpretations of the amyloid cascade hypothesis have led to the recognition of the dynamic equilibrium in which Aβ resides and the importance of peripheral Aβ production and degradation in maintaining healthy Aβ levels. Our review sheds light on the critical role of peripheral organs, particularly the liver, in the metabolism and clearance of circulating Aβ. We explore the mechanisms of Aβ transport across the blood-brain barrier (BBB) via transport proteins such as LRP1 and P-glycoprotein. We also examine how peripheral clearance mechanisms, including enzymatic degradation and phagocytic activity, impact Aβ homeostasis. Our review also discusses potential therapeutic strategies targeting peripheral Aβ clearance pathways. By enhancing these pathways, we propose a novel approach to reducing cerebral Aβ burden, potentially slowing AD progression.
Collapse
Affiliation(s)
- Andrey Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Aliya Kassenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
- Faculty of Natural Sciences, Eurasian National University, Astana 010000, Kazakhstan
| | - Bibifatima Kaupbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| |
Collapse
|
3
|
McCormick LA, McCormick JW, Park C, Follit CA, Wise JG, Vogel PD. Computationally accelerated identification of P-glycoprotein inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583428. [PMID: 39345515 PMCID: PMC11430104 DOI: 10.1101/2024.03.05.583428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Overexpression of the polyspecific efflux transporter, P-glycoprotein (P-gp, MDR1, ABCB1 ), is a major mechanism by which cancer cells acquire multidrug resistance (MDR), the resistance to diverse chemotherapeutic drugs. Inhibiting drug transport by P-gp can resensitize cancer cells to chemotherapy, but there are no P-gp inhibitors available to patients. Clinically unsuccessful P-gp inhibitors tend to bind at the pump's transmembrane drug binding domains and are often P-gp transport substrates, resulting in lowered intracellular concentration of the drug and altered pharmacokinetics. In prior work, we used computationally accelerated drug discovery to identify novel P-gp inhibitors that target the pump's cytoplasmic nucleotide binding domains. Our first-draft study provided conclusive evidence that the nucleotide binding domains of P-gp are viable targets for drug discovery. Here we develop an enhanced, computationally accelerated drug discovery pipeline that expands upon our prior work by iteratively screening compounds against multiple conformations of P-gp with molecular docking. Targeted molecular dynamics simulations with our homology model of human P-gp were used to generate docking receptors in conformations mimicking a putative drug transport cycle. We offset the increased computational complexity using custom Tanimoto chemical datasets, which maximize the chemical diversity of ligands screened by docking. Using our expanded, virtual-assisted pipeline, we identified nine novel P-gp inhibitors that reverse MDR in two types of P-gp overexpressing human cancer cell lines, reflecting a 13.4% hit rate. Of these inhibitors, all were non-toxic to non-cancerous human cells, and six were not likely to be transport substrates of P-gp. Our novel P-gp inhibitors are chemically diverse and are good candidates for lead optimization. Our results demonstrate that the nucleotide binding domains of P-gp are an underappreciated target in the effort to reverse P-gp-mediated multidrug resistance in cancer.
Collapse
|
4
|
Liang C, Paclibar CG, Gonzaga NL, Sison SA, Bath HS, Biju AP, Mukherjee J. [ 125I]IPC-Lecanemab: Synthesis and Evaluation of Aβ-Plaque-Binding Antibody and Comparison with Small-Molecule [ 18F]Flotaza and [ 125I]IBETA in Postmortem Human Alzheimer's Disease. Neurol Int 2024; 16:419-431. [PMID: 38668128 PMCID: PMC11054302 DOI: 10.3390/neurolint16020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Therapeutic antibodies for reducing Aβ plaque load in Alzheimer's disease (AD) is currently making rapid progress. The diagnostic imaging of Aβ plaque load in AD has been underway and is now used in clinical studies. Here, we report our preliminary findings on imaging a therapeutic antibody, Lecanemab, in a postmortem AD brain anterior cingulate. [125I]5-iodo-3-pyridinecarboxamido-Lecanemab ([125I]IPC-Lecanemab) was prepared by coupling N-succinimidyl-5-([125I]iodo)-3-pyridinecarboxylate with Lecanemab in modest yields. The distinct binding of [125I]IPC-Lecanemab to Aβ-rich regions in postmortem human AD brains was higher in grey matter (GM) containing Aβ plaques compared to white matter (WM) (GM/WM was 1.6). Anti-Aβ immunostaining was correlated with [125I]IPC-Lecanemab regional binding in the postmortem AD human brains. [125I]IPC-Lecanemab binding was consistent with the binding of Aβ small molecules, [18F]flotaza and [125I]IBETA, in the same subjects. [18F]Flotaza and [125I]IBETA, however, exhibited significantly higher GM/WM ratios (>20) compared to [125I]IPC-Lecanemab. Our results suggest that radiolabeled [125I]IPC-Lecanemab retains the ability to bind to Aβ in human AD and may therefore be useful as a PET imaging radiotracer when labeled as [124I]IPC-Lecanemab. The ability to directly visualize in vivo a promising therapeutic antibody for AD may be useful in treatment planning and dosing and could be complimentary to small-molecule diagnostic imaging to assess outcomes of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA; (C.L.); (C.G.P.); (N.L.G.); (S.A.S.); (H.S.B.); (A.P.B.)
| |
Collapse
|
5
|
Acharya M, Singh N, Gupta G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Vitamin D, Calbindin, and calcium signaling: Unraveling the Alzheimer's connection. Cell Signal 2024; 116:111043. [PMID: 38211841 DOI: 10.1016/j.cellsig.2024.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Calcium is a ubiquitous second messenger that is indispensable in regulating neurotransmission and memory formation. A precise intracellular calcium level is achieved through the concerted action of calcium channels, and calcium exerts its effect by binding to an array of calcium-binding proteins, including calmodulin (CAM), calcium-calmodulin complex-dependent protein kinase-II (CAMK-II), calbindin (CAL), and calcineurin (CAN). Calbindin orchestrates a plethora of signaling events that regulate synaptic transmission and depolarizing signals. Vitamin D, an endogenous fat-soluble metabolite, is synthesized in the skin upon exposure to ultraviolet B radiation. It modulates calcium signaling by increasing the expression of the calcium-sensing receptor (CaSR), stimulating phospholipase C activity, and regulating the expression of calcium channels such as TRPV6. Vitamin D also modulates the activity of calcium-binding proteins, including CAM and calbindin, and increases their expression. Calbindin, a high-affinity calcium-binding protein, is involved in calcium buffering and transport in neurons. It has been shown to inhibit apoptosis and caspase-3 activity stimulated by presenilin 1 and 2 in AD. Whereas CAM, another calcium-binding protein, is implicated in regulating neurotransmitter release and memory formation by phosphorylating CAN, CAMK-II, and other calcium-regulated proteins. CAMK-II and CAN regulate actin-induced spine shape changes, which are further modulated by CAM. Low levels of both calbindin and vitamin D are attributed to the pathology of Alzheimer's disease. Further research on vitamin D via calbindin-CAMK-II signaling may provide newer insights, revealing novel therapeutic targets and strategies for treatment.
Collapse
Affiliation(s)
- Manish Acharya
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Nicky Singh
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, Universities of Nottingham and Lincoln College of Science, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Rohit Goyal
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Shoolini University, Himachal Pradesh, India.
| |
Collapse
|
6
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Chaves JCS, Wasielewska JM, Cuní-López C, Rantanen LM, Lee S, Koistinaho J, White AR, Oikari LE. Alzheimer's disease brain endothelial-like cells reveal differential drug transporter expression and modulation by potentially therapeutic focused ultrasound. Neurotherapeutics 2024; 21:e00299. [PMID: 38241156 PMCID: PMC10903103 DOI: 10.1016/j.neurot.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Laura M Rantanen
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Serine Lee
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neuroscience Center, Kuopio, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Skinner KT, Palkar AM, Hong AL. Genetics of ABCB1 in Cancer. Cancers (Basel) 2023; 15:4236. [PMID: 37686513 PMCID: PMC10487083 DOI: 10.3390/cancers15174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
ABCB1, also known as MDR1, is a gene that encodes P-glycoprotein (P-gp), a membrane-associated ATP-dependent transporter. P-gp is widely expressed in many healthy tissues-in the gastrointestinal tract, liver, kidney, and at the blood-brain barrier. P-gp works to pump xenobiotics such as toxins and drugs out of cells. P-gp is also commonly upregulated across multiple cancer types such as ovarian, breast, and lung. Overexpression of ABCB1 has been linked to the development of chemotherapy resistance across these cancers. In vitro work across a wide range of drug-sensitive and -resistant cancer cell lines has shown that upon treatment with chemotherapeutic agents such as doxorubicin, cisplatin, and paclitaxel, ABCB1 is upregulated. This upregulation is caused in part by a variety of genetic and epigenetic mechanisms. This includes single-nucleotide variants that lead to enhanced P-gp ATPase activity without increasing ABCB1 RNA and protein levels. In this review, we summarize current knowledge of genetic and epigenetic mechanisms leading to ABCB1 upregulation and P-gp-enhanced ATPase activity in the setting of chemotherapy resistance across a variety of cancers.
Collapse
Affiliation(s)
- Katie T. Skinner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Antara M. Palkar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (K.T.S.); (A.M.P.)
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Aquino GV, Dabi A, Odom GJ, Lavado R, Nunn K, Thomas K, Schackmuth B, Shariff N, Jarajapu M, Pluto M, Miller SR, Eller L, Pressley J, Patel RR, Black J, Bruce ED. Evaluating the effect of acute diesel exhaust particle exposure on P-glycoprotein efflux transporter in the blood-brain barrier co-cultured with microglia. Curr Res Toxicol 2023; 4:100107. [PMID: 37332622 PMCID: PMC10276163 DOI: 10.1016/j.crtox.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
A growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aβ transporter and multidrug resistant pump, P-glycoprotein (P-gp). However, the response of this efflux transporter is not well understood in the context of environmental exposures, such as to DEP. Moreover, microglia are seldom included in in vitro BBB models, despite their significance in neurovascular health and disease. Therefore, the goal of this study was to evaluate the effect of acute (24 hr.) DEP exposure (2000 μg/ml) on P-gp expression and function, paracellular permeability, and inflammation profiles of the human in vitro BBB model (hCMEC/D3) with and without microglia (hMC3). Our results suggested that DEP exposure can decrease both the expression and function of P-gp in the BBB, and corroborated that DEP exposure impairs BBB integrity (i.e. increased permeability), a response that was significantly worsened by the influence of microglia in co-culture. Interestingly, DEP exposure seemed to produce atypical inflammation profiles and an unexpected general downregulation in inflammatory markers in both the monoculture and co-culture, which differentially expressed IL-1β and GM-CSF. Interestingly, the microglia in co-culture did not appear to influence the response of the BBB, save in the permeability assay, where it worsened the BBB's response. Overall, our study is important because it is the first (to our knowledge) to investigate the effect of acute DEP exposure on P-gp in the in vitro human BBB, while also investigating the influence of microglia on the BBB's responses to this environmental chemical.
Collapse
Affiliation(s)
- Grace V. Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Amjad Dabi
- Department of Bioinformatics and Computational Biology, University of North Carolina Chapel Hill, 120-Mason Farm Rd, Chapel Hill, NC 27514, USA
| | - Gabriel J. Odom
- Department of Biostatistics, Sempel College of Public Health, Florida International University, 11200, SW 8th Street, AHC4-470, Miami, FL 33199, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kaitlin Nunn
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Kathryn Thomas
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Nazeel Shariff
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Manogna Jarajapu
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Morgan Pluto
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Sara R. Miller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Leah Eller
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Justin Pressley
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Rishi R. Patel
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Jeffrey Black
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| | - Erica D. Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave, Waco, TX 76707, USA
| |
Collapse
|
10
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|
12
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
13
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
14
|
Hafey MJ, Aleksunes LM, Bridges CC, Brouwer KR, Chien HC, Leslie EM, Hu S, Li Y, Shen J, Sparreboom A, Sprowl J, Tweedie D, Lai Y. Transporters and Toxicity: Insights from the International Transporter Consortium Workshop 4. Clin Pharmacol Ther 2022; 112:527-539. [PMID: 35546260 DOI: 10.1002/cpt.2638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022]
Abstract
Over the last decade, significant progress been made in elucidating the role of membrane transporters in altering drug disposition, with important toxicological consequences due to changes in localized concentrations of compounds. The topic of "Transporters and Toxicity" was recently highlighted as a scientific session at the International Transporter Consortium (ITC) Workshop 4 in 2021. The current white paper is not intended to be an extensive review on the topic of transporters and toxicity but an opportunity to highlight aspects of the role of transporters in various toxicities with clinically relevant implications as covered during the session. This includes a review of the role of solute carrier transporters in anticancer drug-induced organ injury, transporters as key players in organ barrier function, and the role of transporters in metal/metalloid toxicity.
Collapse
Affiliation(s)
- Michael J Hafey
- ADME and Discovery Toxicology, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | | | - Huan-Chieh Chien
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California, USA
| | - Elaine M Leslie
- Departments of Physiology and Lab Med and Path, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Shuiying Hu
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jinshan Shen
- Relay Therapeutics, Cambridge, Massachusetts, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason Sprowl
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California, USA
| |
Collapse
|
15
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
16
|
The Ubiquitin E3 Ligase Nedd4 Regulates the Expression and Amyloid-β Peptide Export Activity of P-Glycoprotein. Int J Mol Sci 2022; 23:ijms23031019. [PMID: 35162941 PMCID: PMC8834788 DOI: 10.3390/ijms23031019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
The ATP-binding cassette transporter, P-glycoprotein (P-gp), has been demonstrated to facilitate the clearance of amyloid-beta (Aβ) peptides, exporting the neurotoxic entity out of neurons and out of the brain via the blood–brain barrier. However, its expression and function diminish with age and in Alzheimer’s disease. P-gp is known to undergo ubiquitination, a post-translational modification that results in internalisation and/or degradation of the protein. NEDD4-1 is a ubiquitin E3 ligase that has previously been shown to ubiquitinate P-gp and reduce its cell surface expression. However, whether this effect translates into altered P-gp activity remains to be determined. siRNA was used to knockdown the expression of Nedd4 in CHO-APP cells. Western blot analysis confirmed that absence of Nedd4 was associated with increased P-gp protein expression. This was accompanied by increased transport activity, as shown by export of the P-gp substrate calcein-AM, as well as enhanced secretion of Aβ peptides, as shown by ELISA. These results implicate Nedd4 in the regulation of P-gp, and highlight a potential approach for restoring or augmenting P-gp expression and function to facilitate Aβ clearance from the brain.
Collapse
|
17
|
Tao QQ, Lin RR, Chen YH, Wu ZY. Discerning the Role of Blood Brain Barrier Dysfunction in Alzheimer’s Disease. Aging Dis 2022; 13:1391-1404. [PMID: 36186141 PMCID: PMC9466977 DOI: 10.14336/ad.2022.0130-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The predominant characteristics of AD are the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau in the brain. Blood brain barrier (BBB) dysfunction as one of the causative factors of cognitive impairment is increasingly recognized in the last decades. However, the role of BBB dysfunction in AD pathogenesis is still not fully understood. It remains elusive whether BBB dysfunction is a consequence or causative fact of Aβ pathology, tau pathology, neuroinflammation, or other conditions. In this review, we summarized the major findings of BBB dysfunction in AD and the reciprocal relationships between BBB dysfunction, Aβ pathology, tau pathology, and neuroinflammation. In addition, the implications of BBB dysfunction in AD for delivering therapeutic drugs were presented. Finally, we discussed how to better determine the underlying mechanisms between BBB dysfunction and AD, as well as how to explore new therapies for BBB regulation to treat AD in the future.
Collapse
Affiliation(s)
| | | | | | - Zhi-Ying Wu
- Correspondence should be addressed to: Dr. Zhi-Ying Wu, the Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. E-mail:
| |
Collapse
|
18
|
Raut S, Patel R, Pervaiz I, Al-Ahmad AJ. Abeta Peptides Disrupt the Barrier Integrity and Glucose Metabolism of Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Neurotoxicology 2022; 89:110-120. [DOI: 10.1016/j.neuro.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
|
19
|
Ammerman L, Mertz SB, Park C, Wise JG. Transport Dynamics of MtrD: An RND Multidrug Efflux Pump from Neisseria gonorrheae. Biochemistry 2021; 60:3098-3113. [PMID: 34609833 DOI: 10.1021/acs.biochem.1c00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MtrCDE system confers multidrug resistance to Neisseria gonorrheae, the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD. Using known conformations of MtrD homologues, we simulated a potential dynamic transport cycle of MtrD using targeted MD techniques (TMD), and we noted that forces were not applied to ligands of interest. In these TMD simulations, we observed the transport of azithromycin and the rejection of streptomycin. In an unbiased, long-time scale simulation of AZY-bound MtrD, we observed the spontaneous diffusion of azithromycin through the periplasmic cleft. Our simulations show how the peristaltic motions of the periplasmic cleft facilitate the transport of substrates by MtrD. Our data also suggest that multiple transport pathways for macrolides may exist within the periplasmic cleft of MtrD.
Collapse
Affiliation(s)
- Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - Sarah B Mertz
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - Chanyang Park
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - John G Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| |
Collapse
|