1
|
Chitcharoen S, Phokaew C, Mauleekoonphairoj J, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K, Payungporn S. Metagenomic analysis of viral genes integrated in whole genome sequencing data of Thai patients with Brugada syndrome. Genomics Inform 2022; 20:e44. [PMID: 36617651 PMCID: PMC9847385 DOI: 10.5808/gi.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 12/31/2022] Open
Abstract
Brugada syndrome (BS) is an autosomal dominant inheritance cardiac arrhythmia disorder associated with sudden death in young adults. Thailand has the highest prevalence of BS worldwide, and over 60% of patients with BS still have unclear disease etiology. Here, we performeda new viral metagenome analysis pipeline called VIRIN and validated it with whole genome sequencing (WGS) data of HeLa cell lines and hepatocellular carcinoma. Then the VIRIN pipelinewas applied to identify viral integration positions from unmapped WGS data of Thai males, including 100 BS patients (case) and 100 controls. Even though the sample preparation had noviral enrichment step, we can identify several virus genes from our analysis pipeline. The predominance of human endogenous retrovirus K (HERV-K) viruses was found in both cases andcontrols by blastn and blastx analysis. This study is the first report on the full-length HERV-Kassembled genomes in the Thai population. Furthermore, the HERV-K integration breakpointpositions were validated and compared between the case and control datasets. Interestingly,Brugada cases contained HERV-K integration breakpoints at promoters five times more oftenthan controls. Overall, the highlight of this study is the BS-specific HERV-K breakpoint positionsthat were found at the gene coding region "NBPF11" (n = 9), "NBPF12" (n = 8) and longnon-coding RNA (lncRNA) "PCAT14" (n = 4) region. The genes and the lncRNA have been reported to be associated with congenital heart and arterial diseases. These findings provide another aspect of the BS etiology associated with viral genome integrations within the humangenome.
Collapse
Affiliation(s)
- Suwalak Chitcharoen
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand,Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| | - John Mauleekoonphairoj
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apichai Khongphatthanayothin
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Bangkok General Hospital, Bangkok 10330, Thailand
| | - Boosamas Sutjaporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pharawee Wandee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koonlawee Nademanee
- Department of Medicine, Faculty of Medicine, Center of Excellence in Arrhythmia Research Chulalongkorn University, Chulalongkorn University, Bangkok 10330, Thailand,Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Pacific Rim Electrophysiology Research Institute, Bumrungrad Hospital, Bangkok 10110, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author: E-mail:
| |
Collapse
|
2
|
Lu J, Rincon N, Wood DE, Breitwieser FP, Pockrandt C, Langmead B, Salzberg SL, Steinegger M. Metagenome analysis using the Kraken software suite. Nat Protoc 2022; 17:2815-2839. [PMID: 36171387 PMCID: PMC9725748 DOI: 10.1038/s41596-022-00738-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/16/2022] [Indexed: 01/19/2023]
Abstract
Metagenomic experiments expose the wide range of microscopic organisms in any microbial environment through high-throughput DNA sequencing. The computational analysis of the sequencing data is critical for the accurate and complete characterization of the microbial community. To facilitate efficient and reproducible metagenomic analysis, we introduce a step-by-step protocol for the Kraken suite, an end-to-end pipeline for the classification, quantification and visualization of metagenomic datasets. Our protocol describes the execution of the Kraken programs, via a sequence of easy-to-use scripts, in two scenarios: (1) quantification of the species in a given metagenomics sample; and (2) detection of a pathogenic agent from a clinical sample taken from a human patient. The protocol, which is executed within 1-2 h, is targeted to biologists and clinicians working in microbiome or metagenomics analysis who are familiar with the Unix command-line environment.
Collapse
Affiliation(s)
- Jennifer Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalia Rincon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Derrick E Wood
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Florian P Breitwieser
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Pockrandt
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Steinegger
- School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Walker K, Kalra D, Lowdon R, Chen G, Molik D, Soto DC, Dabbaghie F, Khleifat AA, Mahmoud M, Paulin LF, Raza MS, Pfeifer SP, Agustinho DP, Aliyev E, Avdeyev P, Barrozo ER, Behera S, Billingsley K, Chong LC, Choubey D, De Coster W, Fu Y, Gener AR, Hefferon T, Henke DM, Höps W, Illarionova A, Jochum MD, Jose M, Kesharwani RK, Kolora SRR, Kubica J, Lakra P, Lattimer D, Liew CS, Lo BW, Lo C, Lötter A, Majidian S, Mendem SK, Mondal R, Ohmiya H, Parvin N, Peralta C, Poon CL, Prabhakaran R, Saitou M, Sammi A, Sanio P, Sapoval N, Syed N, Treangen T, Wang G, Xu T, Yang J, Zhang S, Zhou W, Sedlazeck FJ, Busby B. The third international hackathon for applying insights into large-scale genomic composition to use cases in a wide range of organisms. F1000Res 2022; 11:530. [PMID: 36262335 PMCID: PMC9557141 DOI: 10.12688/f1000research.110194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.
Collapse
Affiliation(s)
- Kimberly Walker
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Guangyi Chen
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - David Molik
- Tropical Crop and Commodity Protection Research Unit, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Daniela C. Soto
- Biochemistry & Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Fawaz Dabbaghie
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Institute for Medical Biometry and Bioinformatics, University hospital Düsseldorf, Düsseldorf, Germany
| | - Ahmad Al Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Elbay Aliyev
- Research Department, Sidra Medicine, Doha, Qatar
| | - Pavel Avdeyev
- Computational Biology Institute, The George Washington University, Washington, DC, 20052, USA
| | - Enrico R. Barrozo
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| | - Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Alejandro R. Gener
- Association of Public Health Labs, Centers for Disease Control and Prevention, Downey, CA, USA
| | - Timothy Hefferon
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Morgan Henke
- Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wolfram Höps
- EMBL Heidelberg, Genome Biology Unit, Heidelberg, Germany
| | | | - Michael D. Jochum
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Jose
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Rupesh K. Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | - Priya Lakra
- Department of Zoology, University of Delhi, Delhi, India
| | - Damaris Lattimer
- University of Applied Sciences Upper Austria - FH Hagenberg, Mühlkreis, Austria
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bai-Wei Lo
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chunhsuan Lo
- Human Genetics Laboratory, National Institute of Genetics, Japan, Mishima City, Japan
| | - Anneri Lötter
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Rajarshi Mondal
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | - Hiroko Ohmiya
- Genetic Reagent Development Unit, Medical & Biological Laboratories Co., Ltd., Tokoyo, Japan
| | - Nasrin Parvin
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | | | | | | | - Marie Saitou
- Center of Integrative Genetics (CIGENE),Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Aditi Sammi
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Philippe Sanio
- University of Applied Sciences Upper Austria - FH Hagenberg, Hagenberg im Mühlkreis, Austria
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Najeeb Syed
- Research Department, Sidra Medicine, Doha, Qatar
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Tiancheng Xu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Jianzhi Yang
- Department of Quantitative and Computational Biology,, University of Southern California, Los Angeles, CA, USA
| | - Shangzhe Zhang
- School of Biology, University of St Andrews, St Andrews, UK
| | - Weiyu Zhou
- Department of Statistical Science, George Mason University, Fairfax, Virginia, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|